Effects Of Anisotropy in (2+1)-dimensional QED

In preparation: JAB, C. S. Fischer, R. Williams
Effects of Anisotropy in QED$_3$ from Dyson–Schwinger equations in a box

J. A. Bonnet
Outline

1. Motivation
2. Technical Aspects
3. Results
4. Summary and Outlook
Outline

1. Motivation
2. Technical Aspects
3. Results
4. Summary and Outlook
Discovery of high-temperature superconductivity in 1986.

- critical temperature > 77 K
- ceramical compounds
- need ‘critical doping’
- non-superconducting phase is insulating anti-ferromagnetic

Look for effective theory to describe phenomenon
Experiments show:

Ding, Norman, Campuzano, PRB 54, R 9678 (1996)

- energy gap function with "d-wave-symmetry"
 → nodal quasiparticles (qp)
- qp: linear energy dispersion relation at the nodes
- vortex-antivortex interactions described by U(1) gauge theory
- qp + gauge fields confined to superconducting plane

⇒ We get a hint to QED_3.

Possible Solution: QED_3

Translation of "experimental output" to QED-language?

Reformulate task:

→ study order parameter of the transition
→ find critical quantities

Feature: Inherent Anisotropy

Nodes of gap function and inherent anisotropy define the metric-like quantity...

\[\epsilon_{\vec{k}} = v_f q_1 + O(q^2) \]
\[\Delta_{\vec{k}} = v_\Delta q_2 + O(q^2) \]

\[
\begin{pmatrix}
 g^{\mu\nu}_1
\end{pmatrix} = \begin{pmatrix}
 1 & (v_F)^2 \\
 (v_\Delta)^2 & 1
\end{pmatrix}
\]

\[
\begin{pmatrix}
 g^{\mu\nu}_2
\end{pmatrix} = \begin{pmatrix}
 1 & (v_\Delta)^2 \\
 (v_F)^2 & 1
\end{pmatrix}
\]

The Anisotropic Lagrangian

\[\mathcal{L}^{iso} = \sum_{j=1,2} \bar{\Psi}_j \left\{ \sum_{\mu=0}^{2} \gamma_{\mu} \left(\partial_{\mu} + i a_{\mu} \right) \right\} \psi_j. \]

\[\Downarrow \]

\[\mathcal{L}^{aniso} = \sum_{j=1,2} \bar{\Psi}_j \left\{ \sum_{\mu=0}^{2} \gamma_{\nu} \sqrt{g^{j}_{\nu\mu}} \left(\partial_{\mu} + i a_{\mu} \right) \right\} \psi_j \]
The Anisotropic Dyson–Schwinger Equations

- Landau gauge

\[S_{-1}^{-1}(\vec{p}) = S_{0i}^{-1}(\vec{p}) + \epsilon^2 \int \frac{d^3q}{(2\pi)^3} \left\{ \sqrt{g}^{\mu\alpha} \gamma_{\alpha}(\vec{q}) S_{Fi}(\vec{q}) \times \sqrt{g}^{\nu\gamma} \Gamma_{\gamma}(\vec{q}) D_{\mu\nu}(\vec{p} - \vec{q}) \right\} \]
How To Solve The DSEs?

We have a rather complex structure of the equations.

- look for CPU friendly environment
- evaluation on 3 dimensional torus

- search for self-consistent solutions

How do we formulate the equations on a torus?
The Torus

- periodic boundary conditions for bosons
- antiperiodic boundary conditions for fermions

⇒ discretized momentum space

\[
\int \frac{d^3 q}{(2\pi)^3} \rightarrow \frac{1}{L^3} \sum_{\text{all momenta}} \ldots
\]

The relevant parameters:
- the box size \(L e^2 \) in coordinate space
- the number of lattice points in momentum space \(N \)
The Task

study dynamical generation of mass

→ Know: depends on number of fermion flavours
→ Effects of anisotropy?
→ Look at B_{max} depending on v_f, v_Δ

Probe the anisotropic plane for N_f^{crit}.
Large-N_f Approximation

- expansion in e^2 keeping coupling $\alpha = \frac{N_f e^2}{8}$ fixed
- vacuum polarization given by:

$$\Pi^{\mu\nu}(p) = \frac{N_f e^2}{16 v_F v_\Delta |\bar{p}|} \sum_i \left(\bar{p}_i^2 g^{\mu\nu}_i - g^{\mu\alpha}_i p_\alpha g^{\nu\delta}_i p_\delta \right)$$

isotropic limit:

$$\Pi^{\mu\nu}(p^2) = \frac{N_f e^2}{8p} \left(p^2 \delta^{\mu\nu} - p^\mu p^\nu \right)$$
Large-N_f Approximation

The phase diagram in velocity phase for a torus of 40^3 points and $L e^2 = 600$:

- N_f^c is strongly volume dependent

 Goecke, Fischer, Williams, PRB 79, 064513 (2009).

- continuum limit can be obtained by extrapolation

\Rightarrow Increasing N_f^c away from plateau around $v_f = v_\Delta = 1$.

JAB, Fischer, Williams: in preparation
Improved Photon And Vertex Ansatz

- Anomalous dimension κ of fermion vector dressing and vacuum polarization in IR

 \[\kappa_{\mathrm{IR}} = \frac{e^2 N_f}{16 \sqrt{2} v_F v_\Delta} \left(\sqrt{\frac{p_i^2}{p_i^2 + e^2}} + \frac{1}{p_i^{1+2\kappa}} \frac{e^2}{p_i^2 + e^2} \right) \]

 \[\kappa_{\mathrm{IR}} = \frac{e^2 N_f}{16 \sqrt{2} v_F v_\Delta} \left(\sqrt{\frac{p_i^2}{p_i^2 + e^2}} + \frac{1}{p_i^{1+2\kappa}} \frac{e^2}{p_i^2 + e^2} \right) \]

 \[JAB, \text{Fischer, Williams: in preparation.} \]

- Ansatz for vacuum polarization generalized to anisotropic spacetime

 \[\Pi_i (\vec{p}) = e^2 N_f \left(\frac{1}{\sqrt{p_i^2 + e^2}} + \frac{1}{p_i^{1+2\kappa}} \frac{e^2}{p_i^2 + e^2} \right) \]

 \[JAB, \text{Fischer, Williams: in preparation.} \]

- Insert minimal Ball-Chiu vertex

 \[\Gamma_i^\beta (\vec{p}, \vec{q}) = \gamma^\beta \frac{A_i^\beta (\vec{p}) + A_i^\beta (\vec{q})}{2} \]

 \[Ball, \text{Chiu, PRD 22 2542 (1980).} \]
Improved Photon And Vertex Ansatz

The phase diagram in velocity phase for a torus of 40^3 points and $Le^2 = 600$:

- $\kappa = 0.0358$ fixed in isotropic limit
- agreement with lattice calculations: Hands, Thomas, PRB 72, 054526 (2005); Thomas, Hands, PRB 75, 134516 (2007)

Decreasing N_f^c as a function of v_f and v_Δ away from maximum around $v_f = v_\Delta = 0.4$.

Outline

1 Motivation

2 Technical Aspects

3 Results

4 Summary and Outlook
Conclusion

Summary

- \(\text{QED}_3 \) is potential effective low-energy theory for high temperature superconductors
- Changes between isotropic and anisotropic \(\text{QED}_3 \)
- Dyson-Schwinger equations in anisotropic space-time
- Results in large-\(N_f \) approximation
- Improved results within more sophisticated truncation scheme

What is left to do ...

- extrapolation to infinite volume
- solve photon equation explicitly
Thank you for your attention!

Questions??