Sarma phase in relativistic and non-relativistic systems

Tina Katharina Herbst

In Collaboration with
I. Boettcher, J. Braun, J. M. Pawlowski, D. Roscher, N. Strodthoff, L. von Smekal and C. Wetterich

53. Internationale Universitätswochen für Theoretische Physik
Schladming, Austria
March 1 - 6, 2015
The Sarma Phase

homogeneous superfluid phase with gapless fermionic excitations

\[\Delta > 0 \]

- 2 fermion species with spin imbalance

\[\delta \mu = \frac{\mu_1 - \mu_2}{2} \]

- Dispersion relation [lowest branches]

\[E_p^{(\pm)} = \sqrt{\varepsilon_p^2 + \Delta^2} \pm \delta \mu \]

[\varepsilon_p \ldots \text{microscopic dispersion relation}; \Delta \ldots \text{pairing gap}]

[Sarma (1963)]

[Boettcher, TKH, Pawlowski, Strodthoff, von Smekal, Wetterich (2014)]
The Sarma Phase

homogeneous superfluid phase with gapless fermionic excitations

\[\Delta > 0 \]

- 2 fermion species with spin imbalance
 \[\delta \mu = \frac{\mu_1 - \mu_2}{2} \]
- Dispersion relation [lowest branches]
 \[E_p^{(\pm)} = \sqrt{\varepsilon_p^2 + \Delta^2} \pm \delta \mu \]
 \[\varepsilon_p \ldots \text{microscopic dispersion relation}; \Delta \ldots \text{pairing gap} \]
- Sarma: \(\Delta > 0 \) and lowest branch below zero

[Sarma (1963)]

[Boettcher, TKH, Pawlowski, Strothoff, von Smekal, Wetterich (2014)]
The Sarma Phase

homogeneous superfluid phase with gapless fermionic excitations

- 2 fermion species with spin imbalance
 \[\delta \mu = \frac{\mu_1 - \mu_2}{2} \]

- Dispersion relation (lowest branches)
 \[E_p^{(\pm)} = \sqrt{\varepsilon_p^2 + \Delta^2} \pm \delta \mu \]
 \[\varepsilon_p \ldots \text{microscopic dispersion relation; } \Delta \ldots \text{pairing gap} \]

- Sarma: \(\Delta > 0 \) and lowest branch below zero
- non-monotonous behavior of occupation numbers
- \(T > 0 \): Fermi surfaces smeared out
 → no sharp distinction
 → Sarma crossover

[Sarma (1963)]

[Sarma phase in relativistic and non-relativistic systems] Tina K. Herbst (ITP Heidelberg)
Talk Outline

1. Sarma Phase in a Relativistic System
2. A Potential Non-Relativistic Analog
3. Taking a Second Look and a Proposition
4. Conclusions
A Relativistic System:

Quark-Meson Model at Finite Isospin Chemical Potential

[www.gsi.de]
Quark-Meson Model with Isospin Chemical Potential

2 flavors of quarks, $\psi = (u, d)^T$, coupled to mesons, $\sigma, \vec{\pi} = (\pi_0, \pi_+, \pi_-)$

$\mu_q = \mu_B/3$: imbalance between quarks and antiquarks

μ_I: imbalance between up and down quarks
Quark-Meson Model with Isospin Chemical Potential

2 flavors of quarks, $\psi = (u, d)^T$, coupled to mesons, $\sigma, \vec{\pi} = (\pi_0, \pi^+, \pi^-)$

$\mu_q = \mu_B/3$: imbalance between quarks and antiquarks

μ_I: imbalance between up and down quarks

$|\mu_I| > m_\pi/2$: pions condense in a Bose condensate
Quark-Meson Model with Isospin Chemical Potential

[Kamikado, Strodthoff, von Smekal, Wambach (2013)]

- 2 flavors of quarks, $\psi = (u, d)^T$, coupled to mesons, $\sigma, \vec{\pi} = (\pi_0, \pi_+, \pi_-)$
- $\mu_q = \mu_B/3$: imbalance between quarks and antiquarks
- μ_I: imbalance between up and down quarks
- $|\mu_I| > m_\pi/2$: pions condense in a Bose condensate
- additionally: chiral symmetry breaking

[Kamikado, Strodthoff, von Smekal, Wambach (2013)]

Sarma phase in relativistic and non-relativistic systems

Tina K. Herbst (ITP Heidelberg)
Quark-Meson Model with Isospin Chemical Potential

2 flavors of quarks, $\psi = (u, d)^T$, coupled to mesons, $\sigma, \vec{\pi} = (\pi_0, \pi_+, \pi_-)$

- $\mu_q = \mu_B/3$: imbalance between quarks and antiquarks
- μ_I: imbalance between up and down quarks
- $|\mu_I| > m_\pi/2$: pions condense in a Bose condensate
- additionally: chiral symmetry breaking

- fix $\mu_I = m_\pi > m_\pi/2$ (pion condensation possible)
- vary μ_q
- order parameter: $\Delta^2 \sim \pi_+\pi_-$
- mean field approximation: no bosonic fluctuations
- Sarma criterion: $\Delta = \mu_q$
Quark-Meson Model with Isospin Chemical Potential

- 2 flavors of quarks, $\psi = (u, d)^T$, coupled to mesons, $\sigma, \vec{\pi} = (\pi_0, \pi^+, \pi^-)$
- $\mu_q = \mu_B/3$: imbalance between quarks and antiquarks
- μ_I: imbalance between up and down quarks
- $|\mu_I| > m_{\pi}/2$: pions condense in a Bose condensate
- additionally: chiral symmetry breaking

- include fluctuations with FRG
 [cf. talks by F. Rennecke, M. Mitter, I. Boettcher, D. Roscher,...]
 \rightarrow strong modifications of the phase structure
 two transition branches at low T
 (first and second order)
Quark-Meson Model with Isospin Chemical Potential

- 2 flavors of quarks, $\psi = (u, d)^T$, coupled to mesons, $\sigma, \vec{\pi} = (\pi_0, \pi^+, \pi^-)$
- $\mu_q = \mu_B/3$: imbalance between quarks and antiquarks
- μ_I: imbalance between up and down quarks
- $|\mu_I| > m_\pi/2$: pions condense in a Bose condensate
- additionally: chiral symmetry breaking

- Sarma phase down to $T = 0$
 - Well-defined
 - Fairly large
 - Measurable?
- Can we use cold atoms “tool box” to learn more about this phase?
A Potential Non-Relativistic Analog

[Gubbels, Stoof (2012)]
Unitary Fermi Gas

ultracold two-component fermions close to a broad Feshbach resonance

- 2 fermion species, $\psi = (\psi_1, \psi_2)^T$, with chem. potentials $\mu_{1,2}$
- bosonization in particle-particle channel: $\phi \sim \psi_1 \psi_2$ [diatomic molecule; Cooper pair]
- unitary regime: s-wave scattering length diverges, $a^{-1} = 0$; strongly coupled
Unitary Fermi Gas

ultracold two-component fermions close to a broad Feshbach resonance

- 2 fermion species, $\psi = (\psi_1, \psi_2)^T$, with chem. potentials $\mu_{1,2}$
- bosonization in particle-particle channel: $\phi \sim \psi_1 \psi_2$ [diatomic molecule; Cooper pair]
- unitary regime: s-wave scattering length diverges, $a^{-1} = 0$; strongly coupled

\[T/\mu \]

- $\mu > 0$: condensation
- order parameter: $\Delta^2 \sim \phi \phi^*$
- first: mean field approximation
- Sarma criterion: $\Delta = \delta \mu$

Sarma phase in relativistic and non-relativistic systems

Tina K. Herbst (ITP Heidelberg)
Unitary Fermi Gas

ultracold two-component fermions close to a broad Feshbach resonance

- 2 fermion species, $\psi = (\psi_1, \psi_2)^T$, with chem. potentials $\mu_1,2$
- bosonization in particle-particle channel: $\phi \sim \psi_1\psi_2$ [diatomic molecule; Cooper pair]
- unitary regime: s-wave scattering length diverges, $a^{-1} = 0$; strongly coupled

very similar!

Sarma phase in relativistic and non-relativistic systems

Tina K. Herbst (ITP Heidelberg)
Including Fluctuations - FRG

- bosonic order-parameter fluctuations included

\[\Rightarrow \partial_t U_k(\Delta), \quad \partial_t g^2 = \eta \phi g^2 \]

[Feshbach coupling]

- solve flow equation on a grid

[Boettcher, Braun, TKH, Pawlowski, Roscher, Wetterich (2014)]
Including Fluctuations - FRG

- bosonic order-parameter fluctuations included
 \[\partial_t U_k(\Delta), \partial_t g^2 = \eta_\phi g^2 \]
 \([g \ldots \text{Feshbach coupling}] \)

- solve flow equation on a grid
 \([\text{Boettcher, Braun, TKH, Pawlowski, Roscher, Wetterich (2014)}]\)

Fluctuations:
- \(T_c \) down
- critical imbalance \(\delta \mu_c(T = 0) \) grows
- agreement with experiment \& Monte Carlo
 \([\text{Ku et al. (2012), Navon et al. (2013)}]\)
 \([\text{Goulko and Wingate (2010)}]\)
Including Fluctuations - FRG

- Bosonic order-parameter fluctuations included
 \[\partial_t U_k(\Delta), \partial_t g^2 = \eta \phi g^2 \]
 [\(g\cdots\text{Feshbach coupling}\)]

- Solve flow equation on a grid
 [Boettcher, Braun, TKH, Pawlowski, Roscher, Wetterich (2014)]

Differences to the Relativistic System:

- **NO** splitting of transition line
- **NO** Sarma phase at \(T = 0 \)
- Sarma phase **shrinks**
Sarma Phase away from Unitarity

- Estimate possible: relativistic system slightly on BCS-side
- \(\rightarrow \) study full imbalanced BCS-BEC crossover \((a^{-1} \neq 0)\) at \(T = 0 \)
Sarma Phase away from Unitarity

- Estimate possible: relativistic system slightly on **BCS-side**
- \(\rightarrow \) study full imbalanced BCS-BEC crossover \((a^{-1} \neq 0)\) at \(T = 0 \)

MFA:
- Sarma phase at \(T = 0 \) occurs . . .
- \(\ldots \) but on **BEC-side** of the crossover

[cf. Sheehy, Radzihovsky (2006), Parish, Marchetti, Lamacraft, Simons (2007)]
Sarma Phase away from Unitarity

- Estimate possible: relativistic system slightly on **BCS-side**
- → study full imbalanced BCS-BEC crossover \((a^{-1} \neq 0)\) at \(T = 0\)

![Diagram showing the Sarma phase in relativistic and non-relativistic systems.](Diagram.png)

MFA:
- Sarma phase at \(T = 0\) occurs . . .
- . . . but on **BEC-side** of the crossover
- Quantum Critical Point
 → if transition of second order, there is always a Sarma phase!

[cf. Sheehy, Radzihovsky (2006), Parish, Marchetti, Lamacraft, Simons (2007)]
Sarma Phase away from Unitarity

- Estimate possible: relativistic system slightly on **BCS-side**
- → study full imbalanced BCS-BEC crossover \((a^{-1} \neq 0)\) at \(T = 0\)

MFA:
- Sarma phase at \(T = 0\) occurs . . .
- . . . but on **BEC-side** of the crossover
- Quantum Critical Point
 → if transition of second order, there is always a Sarma phase!
- Impact of fluctuations ?

[cf. Sheehy, Radzihovsky (2006), Parish, Marchetti, Lamacraft, Simons (2007)]
Sarma Phase away from Unitarity

- Estimate possible: relativistic system slightly on BCS-side
- → study full imbalanced BCS-BEC crossover \((a^{-1} \neq 0)\) at \(T = 0\)

FRG:
- transition line barely changed
- Sarma onset moves right

[MFA: open symbols; FRG: full symbols]
Sarma Phase away from Unitarity

- Estimate possible: relativistic system slightly on BCS-side
- → study full imbalanced BCS-BEC crossover \((a^{-1} \neq 0)\) at \(T = 0\)

FRG:
- transition line barely changed
- Sarma onset moves *right*
- QCP moves right

[MFA: open symbols; FRG: full symbols]
Sarma Phase away from Unitarity

- Estimate possible: relativistic system slightly on **BCS-side**
- → study full imbalanced BCS-BEC crossover \((a^{-1} \neq 0)\) at \(T = 0\)

FRG:
- transition line barely changed
- Sarma onset moves *right*
- QCP moves right
- **NO** Sarma on BCS-side!

[MFA: open symbols; FRG: full symbols]
Why are they so different?
A Second Look at the Two Systems

- **Relativistic System**
 - u_R, d_R
 - u_L, d_L
 - $\sigma, \pi_0, \pi^+, \pi^-$

- **Non-Relativistic System**
 - 1
 - 2
 - ϕ, ϕ^*

- **Proposition**
 - Rel. system: additional $SU(2)_L \times SU(2)_R$ chiral symmetry
 - D.o.f. do not match!

Sarma phase in relativistic and non-relativistic systems

Tina K. Herbst (ITP Heidelberg)
A Second Look at the Two Systems

- **Relativistic System**
 - \(u_R \), \(d_R \), \(u_L \), \(d_L \)
 - \(\sigma, \pi_0, \pi^+, \pi^- \)

- **Non-Relativistic System**
 - 1
 - 2
 - \(\phi, \phi^* \)

- rel. system: additional \(SU(2)_L \times SU(2)_R \) chiral symmetry
- d.o.f. do not match!
- MF phase structure agrees
 - \(\rightarrow \) discrepancies in fermionic sector subleading
- \(\rightarrow \) large difference beyond MFA
 - \(\rightarrow \) bosons and their fluctuations crucial!

Sarma phase in relativistic and non-relativistic systems

Tina K. Herbst (ITP Heidelberg)
A Second Look at the Two Systems

<table>
<thead>
<tr>
<th>rel.</th>
<th>non-rel.</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_R, d_R</td>
<td>1</td>
</tr>
<tr>
<td>u_L, d_L</td>
<td>2</td>
</tr>
<tr>
<td>σ, π_0, π^+, π^-</td>
<td>ϕ, ϕ^*</td>
</tr>
</tbody>
</table>

- rel. system: additional $SU(2)_L \times SU(2)_R$ chiral symmetry
- d.o.f. do not match!
- MF phase structure agrees → discrepancies in fermionic sector subleading
- large difference beyond MFA → bosons and their fluctuations crucial!

A Proposition

non-relativistic system with four fermion species and interactions

$$\hat{H} \sim \lambda \left[(\psi_1 \psi_2)^\dagger \psi_1 \psi_2 + (\psi_3 \psi_2)^\dagger \psi_3 \psi_2 + (\psi_1 \psi_4)^\dagger \psi_1 \psi_4 + (\psi_3 \psi_4)^\dagger \psi_3 \psi_4 \right]$$

- same $SU(2) \times SU(2)$ symmetry as the rel. system
- phase structure likely similar
- Sarma phase at $T = 0$ possible
Take-home Messages

- rel. and non-rel. systems for BCS-BEC crossover similar on MF-level . . .
- . . . but very different beyond
- bosonic d.o.f. and their fluctuations essential
- rel. system: ’non-trivial’ phase structure at low T (Sarma!)
- non-rel. system:
 - good agreement with experiment and QMC for UFG
 - Sarma phase at low T only on BEC-side
- proposition for a non-rel. system that might be more similar to the rel. one

Stay Tuned & Thanks!
Backup: A Simple Criterion for the Sarma Phase

zero-crossing of the lower branch if

\[\delta \mu > \min_p \sqrt{\varepsilon_p^2 + \Delta^2} \]

assume:

\[\min_p \varepsilon_p = 0 \implies \delta \mu_c > \Delta_c \]

[NB: not valid on BEC-side, where \(\mu < 0 \)]
Backup: A Simple Criterion for the Sarma Phase

zero-crossing of the lower branch if
\[\delta \mu > \min_p \sqrt{\epsilon_p^2 + \Delta^2} \]

assume: \[\min_p \epsilon_p = 0 \implies \delta \mu_c > \Delta_c \]

[NB: not valid on BEC-side, where \(\mu < 0 \)]

\[\Delta = \delta \mu \]

\[E^\pm_p \]

\[\Delta = \delta \mu \]

\[\Delta + \delta \mu \]

\[\Delta - \delta \mu \]

\[\epsilon_p \min \]

\[\epsilon_p \max \]

\[[\text{Boettcher, TKH, Pawlowski, Strodthoff, von Smekal, Wetterich (2014)}] \]

► Second Order Transition:
Condition always fulfilled
Backup: A Simple Criterion for the Sarma Phase

zero-crossing of the lower branch if

\[
\delta \mu > \min_p \sqrt{\epsilon_p^2 + \Delta^2}
\]

assume: \(\min_p \epsilon_p = 0 \implies \delta \mu_c > \Delta_c \)

[NB: not valid on BEC-side, where \(\mu < 0 \)]

\[\star\star\star\]

Second Order Transition:
Condition always fulfilled

First Order Transition:
\(\Delta_c \) vs \(\delta \mu_c \) decides

\(\Delta_c < \delta \mu_c \): Sarma phase

[Boettcher, TKH, Pawlowski, Strothoff, von Smekal, Wetterich (2014)]
Backup: A Simple Criterion for the Sarma Phase

zero-crossing of the lower branch if

\[\delta \mu > \min_p \sqrt{\epsilon_p^2 + \Delta^2} \]

assume: \(\min_p \epsilon_p = 0 \implies \delta \mu_c > \Delta_c \)

[NB: not valid on BEC-side, where \(\mu < 0 \)]

\[\Delta = \delta \mu \]

\[\Delta/\Delta_0 \]

\[\delta \mu_{c,III} \]

\[E_\pm \]

\[\Delta + \delta \mu \]

\[\Delta - \delta \mu \]

\[\epsilon_{\min} \]

\[\epsilon_{\max} \]

\[\Delta_c \]

\[\delta \mu_c \]

- **Second Order Transition:**
 Condition always fulfilled

- **First Order Transition:**
 \(\Delta_c \) vs \(\delta \mu_c \) decides
 - \(\Delta_c < \delta \mu_c \): Sarma phase
 - \(\Delta_c > \delta \mu_c \): no Sarma phase

[Boettcher, TKH, Pawlowski, Strodthoff, von Smekal, Wetterich (2014)]
Backup: A Simple Criterion for the Sarma Phase

zero-crossing of the lower branch if

\[\delta \mu > \min_p \sqrt{\varepsilon_p^2 + \Delta^2} \]

assume: \[\min_p \varepsilon_p = 0 \implies \delta \mu_c > \Delta_c \]

[NB: not valid on BEC-side, where \(\mu < 0 \)]

<table>
<thead>
<tr>
<th>Scenario</th>
<th>(\Delta = \delta \mu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>(\delta \mu_c, \text{III})</td>
</tr>
<tr>
<td>II</td>
<td>(\delta \mu_c, \text{II})</td>
</tr>
<tr>
<td>III</td>
<td>(\delta \mu_c, \text{I})</td>
</tr>
</tbody>
</table>

- **Second Order Transition:**
 Condition always fulfilled

- **First Order Transition:**
 \(\Delta_c \) vs. \(\delta \mu_c \) decides
 - \(\Delta_c < \delta \mu_c \): Sarma phase
 - \(\Delta_c > \delta \mu_c \): no Sarma phase

[Boettcher, TKH, Pawlowski, Strodthoff, von Smekal, Wetterich (2014)]
Backup: Quark-Meson Model

\[\mathcal{L}_{QMiso} = \bar{\psi} \left(\frac{\partial}{\partial \tau} + g(\sigma + i\gamma^5\pi\tau) - \gamma_0\mu_q - \gamma_0\tau_3\mu_I \right) \psi \\
+ \frac{1}{2}(\partial_\nu\sigma)^2 + \frac{1}{2}(\partial_\nu\pi_0)^2 + U(\chi, \rho) - c\sigma \\
+ \frac{1}{2}(\partial_\nu + 2\mu_I\delta_\nu^0)\pi_+(\partial_\nu - 2\mu_I\delta_\nu^0)\pi_- , \]

- 2 flavors
- quark (\(\mu_q\)) and isospin (\(\mu_I\)) chemical potentials
- \(SU(2)_L \times SU(2)_R \times U(1)_V\) symmetry
- chiral symmetry breaking: \(\chi \sim \langle \bar{\psi}\psi \rangle\)
- pion condensation: \(\Delta^2 = g^2 \rho = g^2 \pi_+\pi_-\)
Backup: FRG for the BCS-BEC Crossover

\[\mathcal{L}_{UFG} = \sum_{\sigma=1,2} \psi_{\sigma}^* \left(\partial_{\tau} - \frac{\nabla^2}{2M_\sigma} - \mu_\sigma \right) \psi_\sigma + g \left(\phi^* \psi_1 \psi_2 + \text{h.c.} \right) \]

\[+ \phi^* \left(Z_\phi \partial_{\tau} - A_\phi \frac{\nabla^2}{4M} \right) \phi + \nu_\Lambda \phi^* \phi. \]

- 2 species of fermions, \(\sigma = 1, 2 \)
- bosonization: \(\phi \sim \psi_1 \psi_2 \) (particle-particle channel)
- spin imbalance by different chemical potentials \(\mu_1, \mu_2 \)
- \(\nu_\Lambda \sim a^{-1} \) fine tuned to fix scattering length
- condensation: \(\Delta^2 = g^2 \rho = g^2 \phi^* \phi \)

Renormalization of the Propagators

\[P_{\psi_{\sigma},k}(iq_0, \vec{q}) = iq_0 + q^2 - \mu_\sigma, \]
\[P_{\phi,k}(iq_0, \vec{q}) = A_{\phi,k} \left(iq_0 + \frac{q^2}{2} \right). \]
Backup: Renormalization and the Sarma Condition

Fluctuations modify chemical potentials and can thus influence the Sarma criterion, \(\Delta = \delta \mu \).

- Fluctuations increase \(\mu \)
- \(\mu_{\sigma, \text{eff}} \approx \mu_{\sigma} + 0.6 \mu_{\overline{\sigma}} \) \[\mu_{\overline{\sigma}} \ldots \text{chem. pot. of other species} \]
- For imbalance: \(\delta \mu_{\text{eff}} = (\mu_{1, \text{eff}} - \mu_{2, \text{eff}})/2 \approx 0.4 \delta \mu \)
- \(\Rightarrow \) Sarma criterion even less likely fulfilled
- Here: unren. Sarma criterion not fulfilled at \(T = 0 \) \(\Rightarrow \) ren. criterion not fulfilled either