Glueballs and their decay in holographic QCD

Anton Rebhan

Institute for Theoretical Physics TU Wien, Vienna, Austria

March 2, 2015

イロト 不得下 イヨト イヨト

Still elusive: Gluonia (Glueballs)

Spectrum of *bare* glueballs (prior to mixing with $q\bar{q}$ states) more or less known from lattice:

 $\begin{array}{l} m_{0^{++}}\sim 1.7~{\rm GeV} \\ m_{2^{++}}\sim 2.4~{\rm GeV} \end{array}$

Morningstar & Peardon hep-lat/9901004

Still elusive: Gluonia (Glueballs)

Spectrum of *bare* glueballs (prior to mixing with $q\bar{q}$ states) more or less known from lattice:

 $\begin{array}{l} m_{0^{++}}\sim 1.7 \,\, {\rm GeV} \\ m_{2^{++}}\sim 2.4 \,\, {\rm GeV} \end{array}$

Interactions of glueballs still unclear:

- Are glueballs broad or narrow? ($\Gamma_G \propto 1/N_c^2)$
- $\bullet\,$ Do they mix with $q\bar{q}$ strongly or weakly? (mixing $1/N_c$ suppressed)
- \rightarrow no conclusive identification of any glueball in meson spectrum most discussed lowest 0^{++} candidates:

narrow $f_0(1500)$ or $f_0(1710)$ vs. broad background ("red dragon") tensor candidates: broad $f_2(1950)$ or very narrow (unconfirmed) $f_J(2220)$

イロト 不得下 イヨト イヨト

Still elusive: Gluonia (Glueballs)

Spectrum of *bare* glueballs (prior to mixing with $q\bar{q}$ states) more or less known from lattice:

 $\begin{array}{l} m_{0^{++}}\sim 1.7 \,\, \mathrm{GeV} \\ m_{2^{++}}\sim 2.4 \,\, \mathrm{GeV} \end{array}$

Interactions of glueballs still unclear:

- Are glueballs broad or narrow? ($\Gamma_G \propto 1/N_c^2)$
- Do they mix with $q \bar{q}$ strongly or weakly? (mixing $1/N_c$ suppressed)

 \rightarrow no conclusive identification of any glueball in meson spectrum most discussed lowest 0^{++} candidates:

narrow $f_0(1500)$ or $f_0(1710)$ vs. broad background ("red dragon") tensor candidates: broad $f_2(1950)$ or very narrow (unconfirmed) $f_J(2220)$ **Gauge/gravity duality** a new tool to study glueball properties from first principles

Holographic QCD

Celebrated AdS/CFT duality relates strongly coupled large- N_c supersymmetric Yang-Mills theories to supergravity on anti-de Sitter space in 5 dimensions (AdS₅× S^5)

Holographic QCD: generalization to nonconformal nonsupersymmetric case Options:

- Bottom-up: breaking of conformal invariance (necessary for confinement) by hand and matching to QCD with holographic dictionary, e.g. hard-wall model (Erlich-Katz-Son-Stephanov 2005) soft-wall model (Karch-Katz-Son-Stephanov 2006)
- **Top-down**: first-principles constructions from superstring theory with nonconformal D-branes
 - here: Witten[1998]-Sakai-Sugimoto[2004] model

Both approaches surprisingly successful quantitative description of low-energy QCD with minimal set of parameters

WSS model: almost parameter-free (1 coupling at a certain mass scale)!

New results on:

• Glueball decay pattern [arXiv:1501.07906, with F. Brünner & D. Parganlija]

Witten model: Holographic nonsupersymmetric QCD

E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998):

Type-IIA string theory with $N_c \rightarrow \infty$ D4 branes dual to 4 + 1-dimensional super-Yang-Mills theory

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Witten model: Holographic nonsupersymmetric QCD

E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998):

Type-IIA string theory with $N_c \rightarrow \infty D4$ branes dual to 4 + 1-dimensional super-Yang-Mills theory

イロン イロン イヨン イヨン

supersymmetry completely broken by compactification on "thermal-like" circle $x_4 \equiv x_4 + 2\pi/M_{\rm KK \ (Kaluza-Klein)}$

- \bullet antisymmetric b.c. for adjoint fermions: masses $\sim M_{\rm KK}$
- \bullet adjoint scalars not protected by gauge symmetry: also masses $\sim M_{\rm KK}$
 - ightarrow dual to pure-glue YM theory 3+1-dimensional at scales $\ll M_{\rm KK}$

but supergravity approximation needs weak curvature, cannot take limit $M_{\rm KK} \to \infty$

Deconfinement phase transition

Thermal circle in Euclidean time τ in addition to compactified x_4 Hawking-Page transition when $2\pi T = M_{\rm KK}$ (thus ~ 1 GeV ?)

Confined phase

Deconfined phase

$$ds^{2} = \left(\frac{u}{R}\right)^{3/2} \left[d\tau^{2} + d\mathbf{x}^{2} + f(u)dx_{4}^{2}\right]$$
$$+ \left(\frac{R}{u}\right)^{3/2} \left[\frac{du^{2}}{f(u)} + u^{2}d\Omega_{4}^{2}\right]$$

Cigar topology in x_4 -u subspace

$$ds^{2} = \left(\frac{u}{R}\right)^{3/2} \left[\tilde{f}(u)d\tau^{2} + \delta_{ij}d\mathbf{x}^{2} + dx_{4}^{2}\right] \\ + \left(\frac{R}{u}\right)^{3/2} \left[\frac{du^{2}}{\tilde{f}(u)} + u^{2}d\Omega_{4}^{2}\right]$$

$$T = \frac{3}{4\pi} \frac{u_T^{1/2}}{R^{3/2}} \qquad \tilde{f}(u) \equiv 1 - \frac{u_T^3}{u^3}$$

イロト イポト イヨト イヨト

Cigar in τ -u = Euclidean black hole

Glueballs in confined phase

 \exists scalar and tensor glueballs corresponding to 5D dilaton Φ and graviton G_{ij} Csaki, Ooguri, Oz & Terning 1999

・ロト ・回ト ・ヨト ・ヨト

Glueballs in confined phase

 \exists scalar and tensor glueballs corresponding to 5D dilaton Φ and graviton G_{ij} Csaki, Ooguri, Oz & Terning 1999

Type-IIA supergravity compactified on x_4 -circle many more modes: Constable & Myers 1999; Brower, Mathur & Tan 2000

Mode	S ₄	T_4	V_4	N_4	M_4	L_4
Sugra fields	G_{44}	Φ, G_{ij}	C_1	B_{ij}	C_{ij4}	G^{α}_{α}
J^{PC}	0++	$0^{++}/2^{++}$	0^{-+}	1^{+-}	1	0^{++}
n=0	7.30835	22.0966	31.9853	53.3758	83.0449	115.002
n=1	46.9855	55.5833	72.4793	109.446	143.581	189.632
n=2	94.4816	102.452	126.144	177.231	217.397	277.283
n=3	154.963	162.699	193.133	257.959	304.531	378.099
n=4	228.709	236.328	273.482	351.895	405.011	492.171

Lowest mode not from dilaton, but from "exotic polarization" - in 11D notation:

$$\begin{split} \underline{\delta g_{44}} &= -\frac{r^2}{L^2} f \, H(r) G(x), \quad \delta g_{\mu\nu} = \frac{r^2}{L^2} \left[\frac{1}{4} H(r) \eta_{\mu\nu} - \left(\frac{1}{4} + \frac{3R^6}{5r^6 - 2R^6} \right) H(r) \frac{\partial_{\mu} \partial_{\nu}}{M^2} \right] G(x) \\ \delta g_{11,11} &= \frac{r^2}{L^2} \frac{1}{4} H(r) G(x), \quad \delta g_{rr} = -\frac{L^2}{r^2} f^{-1} \frac{3R^6 H(r) G(r)}{5r^6 - 2R^6}, \quad \delta g_{r\mu} = \frac{90r^7 R^6 H(r) \partial_{\mu} G(x)}{M^2 L^2 (5r^6 - 2R^6)^2} \\ &\quad < \square \models \langle \textcircled{P} \models \langle \hline P} \models \langle \hline P \models \langle \textcircled{P} \models \langle \textcircled{P} \models \langle \textcircled{P} \models \langle \hline P \models \langle \hline P \models \langle \hline P \models \langle \hline P \models \langle$$

A. Rebhan

Lattice glueballs vs. supergravity glueballs

March 2, 2015 7 / 17

Sakai-Sugimoto model: Adding chiral quarks

T. Sakai, S. Sugimoto, Prog. Theor. Phys. 113, 843 (2005) add N_f D8- and $\overline{\text{D8}}$ -branes, separated in x_4 , $N_f \ll N_c$ (probe branes)

	0	1	2	3	4	5	6	7	8	9
D4	x	x	х	x	x					
$D8/\overline{D8}$	×	x	х	x		x	x	x	x	x

イロト 不得下 イヨト イヨト

Sakai-Sugimoto model: Adding chiral quarks

T. Sakai, S. Sugimoto, Prog. Theor. Phys. 113, 843 (2005) add N_f D8- and $\overline{\text{D8}}$ -branes, separated in x_4 , $N_f \ll N_c$ (probe branes)

	0	1	2	3	4	5	6	7	8	9
D4	x	x	х	x	x					
$D8/\overline{D8}$	×	x	х	x		x	х	x	x	x

4-8, 4- $\overline{8}$ strings \rightarrow fundamental, massless chiral fermions

flavor symmetry $U(N_f)_L \times U(N_f)_R$

spontaneously broken because D8-D8 have to join in cigar-shaped topology

for now: maximal separation in x_4 (antipodal on x_4 circle): $L = \pi/M_{\rm KK}$

Quantitative predictions

Matching

•
$$m_{\rho} \approx 776 \text{ MeV} \text{ fixes } \overline{M_{\text{KK}} = 949 \text{ MeV}} \ (\Rightarrow T_{deconf} = 151 \text{ MeV})$$

• matching $f_{\pi}^2 = \frac{\lambda N_c}{54\pi^4} M_{\rm KK}^2$ gives $\lambda = g_{\rm YM}^2 N_c \approx 16.63$ [Sakai&Sugimoto 2005-7] (matching instead large- N_c lattice result [Bali et al. 2013] for $m_\rho/\sqrt{\sigma}$ gives $\lambda \approx 12.55$)

イロト イポト イヨト イヨト

Quantitative predictions

Matching

•
$$m_{\rho} \approx 776 \text{ MeV}$$
 fixes $M_{\text{KK}} = 949 \text{ MeV}$ ($\Rightarrow T_{deconf} = 151 \text{ MeV}$)

• matching $f_{\pi}^2 = \frac{\lambda N_c}{54\pi^4} M_{\text{KK}}^2$ gives $\lambda = g_{\text{YM}}^2 N_c \approx 16.63$ [Sakai&Sugimoto 2005-7] (matching instead large- N_c lattice result [Bali et al. 2013] for $m_{\rho}/\sqrt{\sigma}$ gives $\lambda \approx 12.55$)

yields (for $N_c = 3$ and $\lambda = 16.63...12.55$):

- $m_{a_1}^2/m_{
 ho}^2 \approx 2.4$ (versus 2.5 from experiment!)
- nonzero η' mass from anomaly inflow: Witten-Veneziano formula with $m_{\eta'} = \frac{\sqrt{N_f/N_c}}{3\sqrt{3\pi}} \lambda M_{\rm KK} \approx 967 \dots 730$ MeV for $N_f = 3$ (exp.: 958 MeV !)
- decay rate of ρ meson $\Gamma_{\rho \to 2\pi}/m_{\rho} = 0.1535...0.2034 \text{ (exp.: 0.191(1))}$
- decay rate for $\omega \to 3\pi$ (from Chern-Simons part of D8 action) $\Gamma_{\omega \to 3\pi}/m_{\omega} = 0.0033...0.0102$ (exp.: 0.0097(1))
- gluon condensate [Kanitscheider, Skenderis & Taylor JHEP 0809] $C^4 \equiv \langle \frac{\alpha_s}{\pi} F_{\mu\nu}^2 \rangle = \frac{4}{3^7 \pi^4} N_c \lambda^2 M_{\rm KK}^4 \simeq 0.0126 \dots 0.0072 \text{ GeV}^4$ classical SVZ value: 0.012 GeV⁴ (lattice higher but with large subtraction ambiguities)

Lattice vs. supergravity glueballs

seemingly good qualitative agreement by matchup up 2^{++}

(but AdS spectrum somewhat stretched...)

A. Rebhan

March 2, 2015 10 / 17

Sakai-Sugimoto model: glueball masses $\propto M_{\rm KK} = 949$ MeV fixed by $m_{
ho}$

Sakai-Sugimoto model: glueball masses $\propto M_{\rm KK} = 949$ MeV fixed by $m_{
ho}$

March 2, 2015 11 / 17

Sakai-Sugimoto model: glueball masses $\propto M_{\rm KK} = 949$ MeV fixed by $m_{
ho}$

March 2, 2015 11 / 17

Should exotic polarization (δG_{44} with x_4 the compactified direction of SYM₄₊₁) be excluded as lowest glueball mode?

- possibly not part of spectrum of holographic QCD in limit $M_{\rm KK} \to \infty, \lambda \to 0$ (already asked by Constable & Myers)
- $\bullet\,$ simpler bottom-up AdS/QCD have dilaton mode as dual for lowest glueball

イロト イポト イヨト イヨト

Should exotic polarization (δG_{44} with x_4 the compactified direction of SYM₄₊₁) be excluded as lowest glueball mode?

- possibly not part of spectrum of holographic QCD in limit $M_{\rm KK} \to \infty, \lambda \to 0$ (already asked by Constable & Myers)
- $\bullet\,$ simpler bottom-up AdS/QCD have dilaton mode as dual for lowest glueball
- next lowest scalar mode ~ 1487 MeV is (predominantly) dilaton mode (induces metric perturbations other than δG_{44})

イロト イポト イヨト イヨト

Glueball- $\bar{q}q$ couplings in Sakai-Sugimoto model

Gravitational modes stable in confined background, but can calculate effective action for glueball- $\bar{q}q$ interactions

done for lowest (exotic) mode by Hashimoto, Tan & Terashima, Phys.Rev. D77 (2008) 086001, arXiv:0709.2208

revisited, corrected, and extended to other modes by Brünner, Parganlija & AR, arXiv:1501.07906

For example: Vertices of one glueball and two (massless) pions for "exotic" mode:

$$S_{G_E\pi\pi} = \text{Tr} \int d^4x \frac{1}{2} \partial_\mu \pi \, \partial_\nu \pi \left(\breve{c}_1 \eta^{\mu\nu} - c_1 \frac{\partial^\mu \partial^\nu}{M_E^2} \right) G_E$$

for "predominantly dilatonic" mode:

$$S_{G_D\pi\pi} = \text{Tr} \int d^4x \frac{1}{2} \partial_\mu \pi \, \partial_\nu \pi \, \tilde{c}_1 \left(\eta^{\mu\nu} - \frac{\partial^\mu \partial^\nu}{M_D^2} \right) G_D$$

with $\{c_1, \check{c}_1, \check{c}_1\} = \{62.66, 16.39, 17.23\} \times \lambda^{-1/2} N_c^{-1} M_{\rm KK}^{-1}$

and many more: $S_{G
ho
ho}\propto\lambda^{-1/2}N_c^{-1}$, $S_{G
ho\pi\pi}\propto\lambda^{-1}N_c^{-3/2}$,...

Results for decay into two pions:

Exotic mode:
$$\Gamma_{G_E \to \pi\pi}/M_E \approx \frac{13.79}{\lambda N_c^2} \approx 0.092...0.122$$
 ($M_E \approx 855 \text{MeV}$)
Dilaton mode: $\Gamma_{D \to \pi\pi}/M_D \approx \frac{1.359}{\lambda N_c^2} \approx 0.009...0.012$ ($M_D \approx 1487 \text{MeV}$)

・ロト ・回ト ・ヨト ・ヨト

Results for decay into two pions:

Exotic mode: $\Gamma_{G_E \to \pi\pi}/M_E \approx \frac{13.79}{\lambda N_c^2} \approx 0.092 \dots 0.122$ ($M_E \approx 855 \text{MeV}$) Dilaton mode: $\Gamma_{D \to \pi\pi}/M_D \approx \frac{1.359}{\lambda N_c^2} \approx 0.009 \dots 0.012$ ($M_D \approx 1487 \text{MeV}$) Most likely experimental candidates for meson with dominant scalar glueball content: $f_0(1500)$ or $f_0(1710)$ (the latter favored by Janowski et al. arXiv:1408.4921) $\Gamma^{(\text{ex})}(f_0(1500) \to \pi\pi)/(1505 \text{MeV}) = 0.025(3)$ $\Gamma^{(\text{ex})}(f_0(1710) \to \pi\pi)/(1722 \text{MeV}) = \begin{cases} 0.017(4) & (\text{BES})\\ 0.009(2) & (\text{WA102}) \end{cases}$

Results for decay into two pions:

Exotic mode: $\Gamma_{G_E \to \pi\pi}/M_E \approx \frac{13.79}{\lambda N_c^2} \approx 0.092 \dots 0.122$ ($M_E \approx 855 \text{MeV}$) Dilaton mode: $\Gamma_{D \to \pi\pi}/M_D \approx \frac{1.359}{\lambda N_c^2} \approx 0.009 \dots 0.012$ ($M_D \approx 1487 \text{MeV}$) Most likely experimental candidates for meson with dominant scalar glueball content: $f_0(1500)$ or $f_0(1710)$ (the latter favored by Janowski et al. arXiv:1408.4921) $\Gamma^{(\text{ex})}(f_0(1500) \to \pi\pi)/(1505 \text{MeV}) = 0.025(3)$ $\Gamma^{(\text{ex})}(f_0(1710) \to \pi\pi)/(1722 \text{MeV}) = \begin{cases} 0.017(4) & (\text{BES}) \\ 0.009(2) & (\text{WA102}) \end{cases}$

NB: relative width of lowest (exotic) scalar mode much larger than next ones!?

• another hint that G_E should be discarded?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Results for decay into two pions:

Exotic mode:
$$\Gamma_{G_E \to \pi\pi}/M_E \approx \frac{13.79}{\lambda N_c^2} \approx 0.092...0.122$$
 ($M_E \approx 855 \text{MeV}$)
Dilaton mode: $\Gamma_{D \to \pi\pi}/M_D \approx \frac{1.359}{\lambda N_c^2} \approx 0.009...0.012$ ($M_D \approx 1487 \text{MeV}$)

Most likely experimental candidates for meson with dominant scalar glueball content: $f_0(1500)$ or $f_0(1710)$ (the latter favored by Janowski et al. arXiv:1408.4921) $\Gamma^{(ex)}(f_0(1500) \rightarrow \pi\pi)/(1505 \text{MeV}) = 0.025(3)$ $\Gamma^{(ex)}(f_0(1710) \rightarrow \pi\pi)/(1722 \text{MeV}) = \begin{cases} 0.017(4) & (\text{BES}) \\ 0.009(2) & (\text{WA102}) \end{cases}$

NB: relative width of lowest (exotic) scalar mode much larger than next ones!?

- another hint that G_E should be discarded?
- or could it perhaps correspond to broad glueball component of σ-meson à la Narison 1998: QCD sum rules need very broad glueball around 1 GeV plus narrow glueball around 1.5 GeV (cp.: Janowski et al. 1408.4921: eLSM fit of f₀(1710) as predominantly glue, but only with extremely large gluon condensate)

Full decay pattern:

decay $G_D \to 4\pi$ suppressed (below 2ρ threshold): $\Gamma_{G \to 4\pi}/\Gamma_{G \to 2pi} \sim \lambda^{-1}N_c^{-1}$, while $f_0(1500) \to 4\pi$ dominant:

decay	Γ/M (PDG)	$\Gamma/M[G_D]$
$f_0(1500)$ (total)	0.072(5)	0.0270.037
$f_0(1500) \rightarrow 4\pi$	0.036(3)	0.0030.005
$f_0(1500) \rightarrow 2\pi$	0.025(2)	0.0090.012
$f_0(1500) \rightarrow 2K$	0.006(1)	0.0120.016
$f_0(1500) \rightarrow 2\eta$	0.004(1)	0.0030.004

 $\Rightarrow: f_0(1500)$ seemingly disfavored

(日) (同) (三) (三)

Full decay pattern:

decay $G_D \to 4\pi$ suppressed (below 2ρ threshold): $\Gamma_{G \to 4\pi}/\Gamma_{G \to 2pi} \sim \lambda^{-1}N_c^{-1}$, while $f_0(1500) \to 4\pi$ dominant:

decay	Γ/M (PDG)	$\Gamma/M[G_D]$
$f_0(1500)$ (total)	0.072(5)	0.0270.037
$f_0(1500) \rightarrow 4\pi$	0.036(3)	0.0030.005
$f_0(1500) \rightarrow 2\pi$	0.025(2)	0.0090.012
$f_0(1500) \rightarrow 2K$	0.006(1)	0.0120.016
$f_0(1500) \rightarrow 2\eta$	0.004(1)	0.003 0.004

 $\Rightarrow: f_0(1500)$ seemingly disfavored

 $f_0(1710) \to \pi\pi \ {\rm OK},$

but $f_0(1710)$ decays predominantly into 2K!

- not reproduced by (chiral) WSS model,

but might be different in mass-deformed WSS (under investigation)

cf. mechanism of "chiral suppression of scalar glueball decay" (Chanowitz 2005)

イロト イポト イヨト イヨト

decay	М	$\Gamma/M[T(M)]$
$T \to 2\pi$	1487	0.0130.018
$T \rightarrow 2K$	1487	0.0040.006
$T \rightarrow 2\eta$	1487	0.00050.0007
T (total)	1487	$\approx 0.02 \dots 0.03$
$T \to 2\rho \to 4\pi$	2000	0.1350.178
$T\to 2\omega\to 6\pi$	2000	0.0450.059
$T \rightarrow 2\pi$	2000	0.0140.018
$T \rightarrow 2K$	2000	0.0100.013
$T \rightarrow 2\eta$	2000	0.00180.0024
T (total)	2000	$pprox 0.16 \dots 0.21$

Tensor glueball in WSS and extrapolated to higher mass:

With a mass of 2 GeV, the relative width turns out to be comparable with that of the comparatively broad tensor meson $f_2(1950)$, which has $\Gamma/M = 0.24(1)$.

Very narrow (unconfirmed) candidate $f_J(2220)$ not compatible with WSS

Summary – Glueballs in Witten-Sakai-Sugimoto model

After fitting just m_{ρ} to fix $M_{\rm KK} = 949 \ {\rm MeV}$

- good prediction of higher vector and axial vector mesons masses,
- good prediction of deconfinement/chiral transition temperature,
- good prediction of glueball masses if "exotic mode" discarded (or identified with Narison's σ_B)

after fitting f_{π} or $m_{\rho}/\sqrt{\sigma}$ to also fix 't Hooft coupling at $\lambda = 16.63 \dots 12.55$

- $\bullet\,$ good prediction of ρ and ω decay rates
- good prediction of anomalous $m'_\eta \propto N_c^{-\frac{1}{2}} \lambda M_{\rm KK}$
- narrow partial width $G_D \rightarrow \pi \pi$, quite compatible with experimental data for $f_0(1710)$

Warrants further studies!

イロト イポト イヨト イヨト

Summary – Glueballs in Witten-Sakai-Sugimoto model

After fitting just m_{ρ} to fix $M_{\rm KK} = 949 \ {\rm MeV}$

- good prediction of higher vector and axial vector mesons masses,
- good prediction of deconfinement/chiral transition temperature,
- good prediction of glueball masses if "exotic mode" discarded (or identified with Narison's σ_B)

after fitting f_{π} or $m_{\rho}/\sqrt{\sigma}$ to also fix 't Hooft coupling at $\lambda = 16.63 \dots 12.55$

- $\bullet\,$ good prediction of ρ and ω decay rates
- good prediction of anomalous $m'_\eta \propto N_c^{-\frac{1}{2}} \lambda M_{\rm KK}$
- narrow partial width $G_D \rightarrow \pi \pi$, quite compatible with experimental data for $f_0(1710)$

Warrants further studies!

Plans:

- inclusion of nonzero mass for strange quark
- mixing with quarkonia (suppressed by $N_c^{-\frac{1}{2}}$)