Probing New Physics
Using High Intensity Laser Systems

Mattias Marklund
Department of Physics
Umeå University
Sweden
Overview

- Background
- The quantum vacuum
- Pair production
- The Unruh and Hawking effects
- Exotic physics?
- Conclusions
New Physics?

- The coherent generation of massive amounts of collimated photons opens up a wide range of possibilities.

- Laboratory astrophysics, strongly coupled plasmas, photo-nuclear physics...

- Here we will focus on physics connected to the nontrivial quantum vacuum.
Background: opportunities with high-power lasers

Background: opportunities with high-power lasers

Probing new regimes

Astrophysics

Thermodynamics

Quantum fields

Spacetime structure

A touch of gravity?

Modifications standard model, e.g. axions

Magnetic field

Photon

Polarization rotation
The nonlinear quantum vacuum

- Special relativity + Heisenberg’s uncertainty relation = virtual pair fluctuations.
- Antimatter from Dirac’s relativistics quantum mechanics.
- Properly described by QED.
- Photons can effectively interact via fluctuating electron-positron pairs.

The nonlinear quantum vacuum: photon-photon scattering

\[\sigma \approx 0.7 \times 10^{-29} \left(\frac{\hbar \omega}{1 \text{ MeV}} \right)^6 \text{ cm}^2 \]

\[\mathcal{L} = \mathcal{L}_0 + \frac{\varepsilon_0 \alpha}{90\pi E_S^2} \left[(E^2 - c^2 B^2)^2 + 7c^2 (\mathbf{E} \cdot \mathbf{B})^2 \right] \]

\[E_S = m_e^2 c^3 / e\hbar \sim 10^{16} \text{ V/cm} \sim 10^{29} \text{ W/cm}^2 \]
The nonlinear quantum vacuum: photon-photon scattering

- Photon-photon scattering for low-energy photons: $\hbar \omega \ll 2m_e c^2$

- Could be detectable (Lundström et al., PRL 96 (2006)).

- Virtual slit experiments (King et al., Nature Phot. 4 (2010))
The nonlinear quantum vacuum: photon-photon scattering

- Photon-photon scattering for low-energy photons: $\hbar \omega \ll 2m_e c^2$

- Could be detectable (Lundström et al., PRL 96 (2006)).

- Virtual slit experiments (King et al., Nature Phot. 4 (2010))
Pair production

- High energy photon may create pairs: $\hbar \omega \geq 2m_e c^2$

- Multiphoton processes:
 - Low-energy photon scatter off electrons, producing high-energy gamma.
 - Low-energy photons cause pair production through Sauter-Schwinger mechanism.

- Sauter’s resolution to the Klein paradox: static electric field may cause the vacuum to go unstable (Sauter 1931).

- Electrostatic fields under the critical field strength $E_{\text{crit}} \sim 10^{16} \text{ V/cm}$ is exponentially suppressed (Schwinger 1951).

- Relativistic flying/oscillating mirror (Lichters et al., PoP (1996); Bulanov et al, PRL (2003)), relativistic electronic spring (Gonoskov et al., 2011).
Pair production

Some recent simulations on attosecond pulse generation and amplification (Gonoskov et al., submitted (2010))
Pair production

Some recent simulations on attosecond pulse generation and amplification (Gonoskov et al., submitted (2010))
Pair production

- The SLAC experiment (see also Bula et al., 1996 and Bamber et al., Phys. Rev. D (1999)). Also all-optical.

Pair production

- The SLAC experiment (see also Bula et al., 1996 and Bamber et al., Phys. Rev. D (1999)). Also all-optical.

Burke et al., PRL 79, 1626 (1997)

Nonlinear Compton scattering

\[e + n\omega \rightarrow e' + \gamma \]

Multi-photon Breit-Wheeler scattering

\[\gamma + n\omega \rightarrow e^+ + e^- \]
Pair production: radiation reaction

- Recent interest in cascading and pair production.
- Previously looked at in astrophysical settings (magnetosphere problems).
- Seemingly conflicting results in the literature.
- Different intensity values for significant cascading to take place.
- Important issue: put constraints on achievable intensities.

Q1: when is a classical treatment possible? (*the transition problem*)

Q2: when in a relativistic quantum regime, how to treat transitions? (*the dressing-up problem*)

Q3: when is the division of the pairs into separate e\(^+\) and e\(^-\) valid? (*the asymptotic problem*)
Pair production: the fight against exponential suppression

- Using pre-factor [laser four-column/Compton four-volume \(\approx 10^{24}\)] to increase pair production rate (Narozhny et al., 2004).

- Superimposed oscillatory fields (substructure) gives assisted pair production (Dunne, Gies, Schützhold, 2008, 2009).

- \(E >> B\) for counterpropagating/standing waves (Gregori et al., Astra Gemini/RAL experiment, 2010).

- XFEL-optical combos (Hebenstreit, Ilderton, Marklund, in preparation 2011).

- Complex beam configurations (Bulanov et al., 2010).

- Cascading (Ruhl et al., 2010)
Pair production: importance

- Nonperturbative quantum field theory: truly relativistic quantum field theory.

- Techniques developed for QED pair production useful for QFT in general: MD simulations (e.g. Ruhl), quantum kinetic developments (e.g. Alkhofer, Hebenstreit), world-line and light-cone techniques (Gies, Dunne, Heinzl, Ilderton).

- Similarities to strong field ionization problems (Reiss, PRL 2008; Blaga et al., Nature Phys. 2009).

- Nonlinear scattering events (Heinzl et al., PRA 2010).

- Source of ep-plasma?
Pair production: theoretical developments.

Pair production one aspect of a more complex computational problem: how to do nonperturbative many-body quantum physics?

Difficult and necessary computational developments.
Pair production: theoretical developments.

Pair production one aspect of a more complex computational problem: how to do nonperturbative many-body quantum physics?

Difficult and necessary computational developments.
Pair production: theoretical developments.

Pair production one aspect of a more complex computational problem: how to do nonperturbative many-body quantum physics?

Difficult and necessary computational developments.
The Unruh effect

- A tough of gravitational physics using lasers?

Experiments (Chen & Tajima 1999; Schützhold et al. 2006; Brodin et al. 2008).

\[
T_H = \frac{\hbar g}{2\pi c k_B}
\]

\[
T_U = \frac{\hbar a}{2\pi c k_B}
\]
Exotic physics?

- Probing of spacetime structure?
- Noncommutativity (NC) between spacetime coords inferred from quantum gravity/string schemes; IR/UV mixing (Amelino-Camelia et al. 2005).
- Noncommuting coordinates implies position uncertainty which eliminates short-distance singularities.
- Analogue: in the plane orthogonal to a very strong magnetic field we have coordinate NC (lowest Landau level) [Jackiw, Ann. Henri Poincare (2003)].
- Suggested to be probed using vacuum birefringence experiments (Abel et al. JHEP 2006).
Exotic physics?

- Noncommuting coordinates $[x^\mu, x^\nu] = i\Theta^{\mu\nu}$

- Laser intensity effects to counter the energy scale (Heinzl et al., PRD 2010).

- Pair production:
 - depends periodically on collision angle,
 - larger cross section,
 - threshold (number of photons, for ELI parameters) lowered from QED value.

- Laser can thus put lower limits on the involved phenomenological parameters.

\[n_{0,\Theta} \approx n_0 - \frac{2 \times 10^8 m^6}{k \cdot k'} |\Theta|^2 \]
Exotic physics? Possible routes for detection.

- Birefringence.
- Anisotropic speed of light.
- Anisotropy in quantum fields.
- Violations of universality of free fall and the universality of the gravitational redshift.
- Time and space variations of “constants”.
- Charge non-conservations.
- Anomalous dispersion.
- Decoherence and spacetime fluctuations.
- Modified interference.
- Non-localities.
Conclusions

• Ample opportunities for probing new physics with high-power laser.

• Requires a strong collaboration between theory, simulations, and experiments.

• In particular, still many parts of QED that are not computationally viable, or that need independent verifications.

• The classical-quantum transition of radiation reaction.

• Massive pair production or not in the laboratory?

• Deviations from QED or standard model?