Ulrich Hohenester


This site is no longer maintained. Please use the new site for the MNPBEM toolbox.

MNPBEM is a toolbox for the simulation of metallic nanoparticles (MNP), using a boundary element method (BEM) approach developed by F. J. Garcia de Abajo and A. Howie, Phys. Rev. B 65, 115418 (2002). The main purpose of the toolbox is to solve Maxwell's equations for a dielectric environment where bodies with homogeneous and isotropic dielectric functions are separated by abrupt interfaces. Although the approach is in principle suited for arbitrary body sizes and photon energies, it is tested (and probably works best) for metallic nanoparticles with sizes ranging from a few to a few hundreds of nanometers, and for frequencies in the optical and near-infrared regime.

On this page we provide papers describing the toolbox, the MNPBEM toolbox, and the help pages. A new version of the toolbox MNPBEM13, which has been published in Comp. Phys. Commun. 185, 1177 (2014), includes classes for EELS simulations and can be downloaded below. This new version additionally includes mirror symmetry and corrects several minor bugs of the first release.

Toolbox. When using the MNPBEM toolbox, we ask you to cite the following reference:
  • U. Hohenester and A. Trügler, Comp. Phys. Commun. 183, 370 (2012).    (PDF)  CPC

Help pages

The help pages have been produced with the publish command of Matlab, several features, such as matlab:doc and matlab:edit, are not working properly in the html files.

MNPBEM Toolbox
MNPBEM User Guide
Function Reference
MNPBEM Examples

Selected publications with the MNPBEM Toolbox 
  • Andreas Trügler, PhD Thesis, Karl-Franzens-Universität Graz (2011).  PhDThesis (30 MB)

      Other groups:
  • O. D. Miller et al., Fundamental Limits to Extinction by Metallic Nanoparticles;
    Phys. Rev. Lett. 112, 123903 (2014).
  • G. Longobucco et al., High stability and sensitivity of gold nano-islands for localized surface plasmon spectroscopy: Role of solvent viscosity and morphology;
    Sensors and Actuators B: Chemical 191, 356 (2014).
  • Y. Montelongo et al., Polarisation switchable diffraction based on sub-wavelength plasmonic nano antennas;
    Nano Lett. 14, 294 (2014).
  • J. Y. Suh and T. W. Odom, Nonlinear properties of nanoscale antennas;
    Nano Today 8, 469 (2013).
  • G. Baffou et al., Photoinduced Heating of Nanoparticle Arrays;
    ACS Nano  7, 6478 (2013).
  • M. Gunendi et al., Understanding the plasmonic properties of dewetting formed Ag nanoparticles for large area solar cell applications;
    Optics Express 21, 18344 (2013).
  • C. Diaz-Egea et al., High spatial resolution mapping of surface plasmon resonance modes in single and aggregated gold nanoparticles assembled on DNA strands;
    Nanoscale Res. Lett. 8, 337 (2013).
  • H. Liang et al., Asymmetric Silver "Nanocarrot" Structures: Solution Synthesis and Their Asymmetric Plasmonic Resonances;
    J. Am. Chem. Soc. 135,
    9616 (2013).
  • L. Chuntonov et al., Maximal Raman Optical Activity in Hybrid Single Molecule-Plasmonic Nanostructures with Multiple Dipolar Resonances;
    Nano Lett. 13, 1285 (2013).
  • D. Rossouw et al.,  Plasmonic Response of Bent Silver Nanowires for Nanophotonic Subwavelength Waveguiding;
    Phys. Rev. Lett. 110, 066801 (2013).
  • T. Salminen et al., Coating of gold nanoparticles made by pulsed laser ablation in liquids with silica shells by simultaneous chemical synthesis;
    Phys. Chem. Chem. Phys. 15,
    3047 (2013).
  • I. Ament et al., Single Unlabeled Protein Detection on Individual Plasmonic Nanoparticles;
    Nano Letters 12, 1092 (2012). 

      Our group:
  • F. Schmidt et al., Universal Dispersion of Scaling of Surface Plasmon in Flat Nanostructures;
    Nature Communications 5, 3604 (2014).
  • A. Trügler et al., Near-field and SERS enhancement from rough plasmonic nanoparticles;
    Phys. Rev. B 89, 165409 (2014). (2014).
  • U. Hohenester, Simulating electron energy loss spectroscopy with the MNPBEM toolbox;
    Comp. Phys. Commun. 185, 1177 (2014). 
  • C. Huber et al., Optical near-field excitation at commercial scanning probe microscopy tips: A theoretical and experimental investigation; 
    Phys. Chem. Chem. Phys. 16, 2289 (2014).
  • C. Gruber et al.,Spectral modifications and polarization dependent coupling in tailored assemblies of quantum dots and plasmonic nanowires;
    Nano Lett. 13, 4257 (2013).
  • A. Hörl et al., Tomography of particle plasmon fields from electron energy loss spectroscopy;
    Phys. Rev. Lett. 111, 086801 (2013).
  • P. Dombi et al., Ultrafast hot-electron emission from plasmonic nanoparticles;
    Nano Lett. 13, 674 (2013).  
  • F. Schmidt et al., Dark plasmonic breathing modes in silver nanodisks;
    Nano Lett. 12, 5780 (2012).  
  • T. Hanke et al., Tailoring spatiotemporal light confinement in single plasmonic nanoantennas;
    Nano Letters 12, 992 (2012).  
  • A. Jakab et al., Highly sensitive plasmonic silver nanorods;
    ACS Nano 5, 6880 (2011). 
  • A. Trügler et al., Influence of surface roughness on the optical properties of plasmonic nanoparticles;
    Phys. Rev. B 83, 081412 (R) (2011).  
  • D. Koller et al., Superresolution Moire mapping of particle plasmon modes;
    Phys. Rev. Lett. 104, 143901 (2010).
  • J. Becker et al.,The optimal aspect ratio of gold nanorods for plasmonic bio-sensing;
    Plasmonics 5, 161 (2010). 
  • U. Hohenester et al., Electron energy loss spectroscopy of plasmonic nanoparticles;
    Phys. Rev. Lett. 103, 106801 (2009). 
  • B. Schaffer et al., High-resolution surface plasmon imaging of gold nanoparticles by energy filtered transmission electron microscopy;
    Phys. Rev. B 79, 041401(R) (2009).

Ulrich Hohenester
Institut für Physik, Karl-Franzens Universität Graz,