I-395-N16 Quantum Transport Equations: Kinetic, Relativistic, and Diffusive Phenomena
 


Project

Abstract

Scientists/Scholars

Project Publications

Further Activities

Cooperations

Final Report

Sub-Project: Absorbing Boundary Conditions and Numerical Schemes for the Dirac Equation (PI: W. Poetz)


x-ing


a) Peer-reviewed

[1] R. Hammer, C. Ertler, and W. Poetz, "Solitonic Dirac fermion wave guide networks on topological insulator surfaces",  Appl. Phys. Lett. 102, 193514 (2013);   Author-PDF(©2013 the American Institute of Physics).

[2]  R. Hammer and W. Poetz, "Staggered grid leap-frog scheme for the (2+1)D Dirac equation", Comp. Phys. Comm. DOI: 10.1016/j.cpc.2013.08.013, final submitted version, in press,  arXiv:1306.5895
 

[3]  R. Hammer, W. Poetz, and A. Arnold, "A dispersion and norm preserving finite difference scheme with transparent boundary conditions for the Dirac equation in (1+1)D", J. Comp. Phys., final submitted version, in press, arXiv:1302.5587
  
[4] R. Hammer and W. Poetz,  "Dynamics of domain-wall Dirac fermions on a topological insulator: a chiral fermion beam splitter", under review,  arXiv:1306.6139v1

[5] R. Hammer, W. Poetz, and A. Arnold, "Single-cone real-space finite difference scheme for the time-dependent Dirac equation", arXiv:1309.3452

b) Non peer-reviewed

[1]  R. Hammer, C. Ertler, and W. Poetz, "Dirac fermion wave guide networks on topological insulator surfaces", (early summary of preliminary work) arXiv:1205.6941 


c) Stand-alone publications

---

d) Publications for the general public and other publications



Some Posters:


ISANN2011
Aachen-2012-1Aachen-2012-2

 

 

 
 

With support from
FWFDer Wissenschaftsfonds