The Physics Of Yang-Mills-Higgs Systems

Axel Maas

9th of January 2014
University of Heidelberg
Germany
Overview

- Yang-Mills-Higgs theory
Overview

- Yang-Mills-Higgs theory
- Physical states from the lattice
Overview

- Yang-Mills-Higgs theory
- Physical states from the lattice
- Quantum phase diagram
Overview

- Yang-Mills-Higgs theory
- Physical states from the lattice
- Quantum phase diagram
- Excited states from the lattice
Overview

- Yang-Mills-Higgs theory
- Physical states from the lattice
- Quantum phase diagram
- Excited states from the lattice
- Experimental signatures
- Summary
Yang-Mills-Higgs Theory
The Higgs sector as a gauge theory

- The Higgs sector is a gauge theory
The Higgs sector as a gauge theory

- The Higgs sector is a gauge theory

\[L = -\frac{1}{4} W^a_{\mu\nu} W^{\mu\nu}_a \]

\[W^a_{\mu\nu} = \partial_\mu W^a_\nu - \partial_\nu W^a_\mu \]

- Ws

\[W^a_\mu \]
The Higgs sector as a gauge theory

- The Higgs sector is a gauge theory

\[L = -\frac{1}{4} W^a_{\mu\nu} W^\mu_{\nu} \]

\[W^a_{\mu\nu} = \partial_\mu W^a_\nu - \partial_\nu W^a_\mu + g f^{a}_{bc} W^b_\mu W^c_\nu \]

- \(W^a_\mu \)

- Coupling \(g \) and some numbers \(f^{abc} \)
The Higgs sector as a gauge theory

- The Higgs sector is a gauge theory
 \[L = -\frac{1}{4} W_{\mu \nu}^a W_{\mu \nu}^a \]
 \[W_{\mu \nu}^a = \partial_\mu W^a_\nu - \partial_\nu W^a_\mu + g f_{bc}^a W^b_\mu W^c_\nu \]

- Ws
 \[W^a_\mu \]

- No QED: Ws and Zs are degenerate

- Coupling \(g \) and some numbers \(f^{abc} \)
The Higgs sector as a gauge theory

- The Higgs sector is a gauge theory
 \[L = -\frac{1}{4} W^a_{\mu\nu} W_{a}^{\mu\nu} + (D^i_\mu h^j) + D^u_{ik} h_k \]
 \[W^a_{\mu\nu} = \partial_\mu W^a_\nu - \partial_\nu W^a_\mu + g f^a_{bc} W^b_\mu W^c_\nu \]
 \[D^{ij}_\mu = \delta^{ij} \partial_\mu \]
- Ws \(W^a_\mu \)
- Higgs \(h_i \)
- No QED: Ws and Zs are degenerate
- Coupling \(g \) and some numbers \(f^{abc} \)
The Higgs sector as a gauge theory

• The Higgs sector is a gauge theory

\[L = -\frac{1}{4} W^a_{\mu\nu} W^a_{\mu\nu} + (D^i_\mu h^j) + D^u_{ik} h_k \]

\[W^a_{\mu\nu} = \partial_\mu W^a_\nu - \partial_\nu W^a_\mu + gf^{a}_{bc} W^b_\mu W^c_\nu \]

\[D^{ij}_\mu = \delta^{ij} \partial_\mu - ig W^a_\mu t^{ij}_a \]

• Ws \[W^a_\mu \]

• Higgs \[h_i \]

• No QED: Ws and Zs are degenerate

• Coupling \(g \) and some numbers \(f^{abc} \) and \(t^{ij}_a \)
The Higgs sector as a gauge theory

- The Higgs sector is a gauge theory

\[L = -\frac{1}{4} W^a_{\mu \nu} W^{\mu \nu}_a + (D^j_i h^j) + D^\mu_{ik} h^k + \lambda (h^a h^a + - \nu^2)^2 \]

\[W^a_{\mu \nu} = \partial^\mu W^a_{\nu} - \partial^\nu W^a_{\mu} + gf^{a}_{bc} W^b_{\mu} W^c_{\nu} \]

\[D^i_j = \delta^i_j \partial^\mu - ig W^a_{\mu} t^i_j \]

- Ws \[W^a_{\mu} \]

- Higgs \[h_i \]

- No QED: Ws and Zs are degenerate

- Couplings \(g, \nu, \lambda \) and some numbers \(f^{abc} \) and \(t^i_j \)
Symmetries

\[L = -\frac{1}{4} W^a_{\mu \nu} W^{\mu \nu}_a + (D^i_{\mu} h^j) + D^a_{\mu} h_k + \lambda (h^a h^+_a - v^2)^2 \]

\[W^a_{\mu \nu} = \partial_{\mu} W^a_{\nu} - \partial_{\nu} W^a_{\mu} + g f^a_{bc} W^b_{\mu} W^c_{\nu} \]

\[D^i_{\mu} = \delta^i_{\mu} \partial_{\mu} - ig W^a_{\mu} t^i_a \]
Symmetries

\[L = -\frac{1}{4} W^a_{\mu \nu} W^{a \mu \nu} + (D^i_j h^j) + D^u_{ik} h_k + \lambda (h^a h_a^+ - \nu^2)^2 \]

\[W^a_{\mu \nu} = \partial_\mu W^a_\nu - \partial_\nu W^a_\mu + gf^a_{bc} W^b_\mu W^c_\nu \]

\[D^i_j = \delta^i_j \partial_\mu - ig W^a_\mu t^i_j \]

- Local SU(2) gauge symmetry
 - Invariant under arbitrary gauge transformations \(\phi^a(x) \)

\[W^a_\mu \rightarrow W^a_\mu + (\delta^a_b \partial_\mu - gf^a_{bc} W^c_\mu) \phi^b \]

\[h_i \rightarrow h_i + g t^i_j \phi^a h_j \]
Symmetries

\[
L = -\frac{1}{4} W^a_{\mu \nu} W^b_{a \mu \nu} + (D^i_{\mu} h^j) + D^i_{ik} h_k + \lambda (h^a h^+_a - v^2)^2
\]

\[
W^a_{\mu \nu} = \partial^a_{\mu} W^a_{\nu} - \partial^a_{\nu} W^a_{\mu} + gf^a_{bc} W^b_{\mu} W^c_{\nu}
\]

\[
D^i_{\mu} = \delta^i_{ij} \partial^a_{\mu} - ig W^a_{\mu} t^i_{a}
\]

- Local SU(2) gauge symmetry
 - Invariant under arbitrary gauge transformations \(\phi^a(x) \)
 \[
 W^a_{\mu} \rightarrow W^a_{\mu} + (\delta^a_b \partial^a_{\mu} - g f^a_{bc} W^c_{\mu}) \phi^b
 \]
 \[
 h_i \rightarrow h_i + g t^i_{a} \phi^a h_j
 \]
- Global SU(2) Higgs flavor symmetry
 - Acts as right-transformation on the Higgs field only
 \[
 W^a_{\mu} \rightarrow W^a_{\mu} \quad h_i \rightarrow h_i + a^i_{j} h_j + b^i_{j} h_j^*
 \]
Classical analysis

\[L = -\frac{1}{4} W^a_{\mu\nu} W_a^{\mu\nu} + (D^i_\mu h^j) + D^\mu_{ik} h_k + \lambda (h^a h^a + - \nu^2)^2 \]

[Bohm et al. 2001]
Classical analysis

\[L = \lambda \left(h^a h_a^+ - \nu^2 \right)^2 \]

- Classical analysis of the Higgs sector
Classical analysis

\[L = \lambda \left(h^a h_a^+ - \nu^2 \right)^2 \]

The shape of the Higgs potential depends on parameters.

- Classical analysis of the Higgs sector

[Bohm et al. 2001]
Classical analysis

\[L = \lambda (h^a h_a^+ - v^2)^2 \]

- Shape depends on parameters
- Experiments decides
 - Higgs mass is tachyonic

- Classical analysis of the Higgs sector

[Bohm et al. 2001]
Classical analysis

\[L = \lambda \left(h^a h_a^+ - \nu^2 \right)^2 \]

Shape depends on parameters
Experiments decides
- Higgs mass is tachyonic

Classical minima

• Classical analysis of the Higgs sector
Classical analysis

\[L = \lambda (h^a h_a^+ - v^2)^2 \]

Shape depends on parameters

Experiments decides
- Higgs mass is tachyonic

Classical minimum

Global gauge choice

- Classical analysis of the Higgs sector
Classical analysis

\[L = \lambda \left(h^a h^+_a - v^2 \right)^2 \]

- Classical analysis of the Higgs sector
- Non-zero condensate shifts Higgs mass to an ordinary mass

Experiments decides
- Higgs mass is tachyonic

Classical minimum

Global gauge choice

Shape depends on parameters
Classical analysis

\[L = \lambda \left(h^a h^+_a - v^2 \right)^2 \]

- Classical analysis of the Higgs sector
- Non-zero condensate shifts Higgs mass to an ordinary mass
- Perform perturbative expansion around the classical vacuum

Shape depends on parameters
Experiments decides
- Higgs mass is tachyonic
Classical minimum
Global gauge choice

[Bohm et al. 2001]
Standard approach

- Minimize action classically
 - Yields $hh^+ = v^2$ - Higgs vev

[Bohm et al. 2001]
Standard approach

- Minimize action classically
 - Yields $hh^+ = v^2$ - Higgs vev
 - Assume quantum corrections to this are small
Standard approach

- Minimize action classically
 - Yields \(hh^+ = v^2 \) - Higgs vev
 - Assume quantum corrections to this are small
- Perform global gauge transformation such that

\[
h(x) = \begin{pmatrix} \varphi^1(x) + i \varphi^2(x) \\ v + \eta(x) + i \varphi^3(x) \end{pmatrix} \Rightarrow \langle h \rangle = \begin{pmatrix} 0 \\ v \end{pmatrix}
\]

[Bohm et al. 2001]
Standard approach

- Minimize action classically
 - Yields $h h^+ = v^2$ - Higgs vev
 - Assume quantum corrections to this are small

- Perform global gauge transformation such that

 $$
 h(x) = \begin{pmatrix}
 \phi^1(x) + i \phi^2(x) \\
 v + \eta(x) + i \phi^3(x)
 \end{pmatrix} \Rightarrow \langle h \rangle = \begin{pmatrix} 0 \\ v \end{pmatrix}
 $$

- η mass depends at tree-level on v
Standard approach

- Minimize action classically
 - Yields $hh^+ = v^2$ - Higgs vev
 - Assume quantum corrections to this are small

- Perform global gauge transformation such that

\[
 h(x) = \begin{pmatrix} \varphi^1(x) + i \varphi^2(x) \\ v + \eta(x) + i \varphi^3(x) \end{pmatrix} \Rightarrow \langle h \rangle = \begin{pmatrix} 0 \\ v \end{pmatrix}
\]

- η mass depends at tree-level on v
- Perform perturbation theory
Implications of global transformation

- Not all charge directions equal
Implications of global transformation

- Not all charge directions equal
 - This is not physical, but merely a choice of gauge
Implications of global transformation

• Not all charge directions equal
 • This is not physical, but merely a choice of gauge
 • “Spontaneous gauge symmetry breaking”
Implications of global transformation

• Not all charge directions equal
 • This is not physical, but merely a choice of gauge
 • “Spontaneous gauge symmetry breaking”
 • Broken by the transformation, not by the dynamics
 • Dynamics only affect the length of the Higgs field
 • Local symmetry intact and cannot be broken

[Elitzur PR’75]
Implications of global transformation

- Not all charge directions equal
 - This is not physical, but merely a choice of gauge
 - “Spontaneous gauge symmetry breaking”
 - Broken by the transformation, not by the dynamics
 - Dynamics only affect the length of the Higgs field
 - Local symmetry intact and cannot be broken
 [Elitzur PR'75]
- Consequence: Symmetry in charge space not manifest (hidden)
 - Complicated charge tensor structures
Implications of global transformation

- Not all charge directions equal
 - This is not physical, but merely a choice of gauge
 - “Spontaneous gauge symmetry breaking”
 - Broken by the transformation, not by the dynamics
 - Dynamics only affect the length of the Higgs field
 - Local symmetry intact and cannot be broken
 [Elitzur PR'75]
- Consequence: Symmetry in charge space not manifest (hidden)
 - Complicated charge tensor structures
 - Symmetry expressed in STIs/WTIs
Masses from propagators

• Masses are determined by poles of propagators
Masses from propagators

• Masses are determined by poles of propagators

• 2 propagators
 • W/Z \(D^{ab}_{\mu\nu}(x-y) = \langle W^a_{\mu}(x) W^b_{\nu}(y) \rangle \)
 • Degenerate without QED
Masses from propagators

- Masses are determined by poles of propagators
- 2 propagators
 - $W/Z \quad D^{ab}_{\mu\nu}(x - y) = \langle W^a_\mu(x) W^b_\nu(y) \rangle$
 - Degenerate without QED
 - Scalar $D^{ij}_H(x - y) = \langle h^i(x) h^{j+}(y) \rangle$
Masses from propagators

- Masses are determined by poles of propagators

- 2 propagators
 - $W/Z \quad D_{\mu \nu}^{ab}(x-y) = \langle W_\mu^a(x) W_\nu^b(y) \rangle$
 - Degenerate without QED
 - Scalar $D_H^{ij}(x-y) = \langle h^i(x) h^{j+}(y) \rangle$

- (Tree-level/perturbative) poles at Higgs and W mass
Masses from propagators

- Masses are determined by poles of propagators
- 2 propagators
 - W/Z \(D_{\mu\nu}^{ab}(x-y) = <W^a_\mu(x)W^b_\nu(y)> \)
 - Degenerate without QED
 - Scalar \(D_H^{ij}(x-y) = <h^i(x)h^{j+}(y)> \)
- (Tree-level/perturbative) poles at Higgs and W mass
 - But only in a fixed gauge
 - Elementary fields are gauge-dependent
Masses from propagators

- Masses are determined by poles of propagators
- 2 propagators
 - W/Z $D_{\mu\nu}^{ab}(x-y) = <W_\mu^a(x)W_\nu^b(y)>$
 - Degenerate without QED
 - Scalar $D_{H}^{ij}(x-y) = <h^i(x)h^{j+}(y)>$
- (Tree-level/perturbative) poles at Higgs and W mass
 - But only in a fixed gauge
 - Elementary fields are gauge-dependent
 - Without gauge fixing propagators are $\sim \delta(x-y)$
Physical states

• Elementary fields depend on the gauge
 • Except right-handed neutrinos

[Fröhlich et al. PLB 80, 't Hooft ASIB 80, Bank et al. NPB 79]
Physical states

- Elementary fields depend on the gauge
 - Except right-handed neutrinos
- Experiments measure peaks in cross-sections for particular quantum numbers
 - E.g. hadrons in QCD

[Fröhlich et al. PLB 80, 't Hooft ASIB 80, Bank et al. NPB 79]
Physical states

- Elementary fields depend on the gauge
 - Except right-handed neutrinos
- Experiments measure peaks in cross-sections for particular quantum numbers
 - E.g. hadrons in QCD
- Gauge-invariance requires composite operators in gauge theories
 - Not asymptotic states in perturbation theory

[Fröhlich et al. PLB 80, 't Hooft ASIB 80, Bank et al. NPB 79]
Physical states

- Elementary fields depend on the gauge
 - Except right-handed neutrinos
- Experiments measure peaks in cross-sections for particular quantum numbers
 - E.g. hadrons in QCD
- Gauge-invariance requires composite operators in gauge theories
 - Not asymptotic states in perturbation theory
 - Higgs-Higgs, W-W, Higgs-Higgs-W etc.

[Fröhlich et al. PLB 80, 't Hooft ASIB 80, Bank et al. NPB 79]
Lattice and Physical States
Lattice calculations

• Take a finite volume – usually a hypercube
Lattice calculations

- Take a \textit{finite volume} – usually a hypercube
- \textbf{Discretize it,} and get a finite, hypercubic lattice
Lattice calculations

- Take a **finite volume** – usually a hypercube
- **Discretize it**, and get a finite, hypercubic lattice
- Calculate observables using path integral
 - Can be done numerically
 - Uses Monte-Carlo methods
Lattice calculations

• Take a **finite volume** – usually a hypercube
• **Discretize it**, and get a finite, hypercubic lattice
• Calculate observables using path integral
 • Can be done numerically
 • Uses Monte-Carlo methods
• **Artifacts**
 • Finite volume/discretization
Lattice calculations

- Take a **finite volume** – usually a hypercube
- **Discretize it**, and get a finite, hypercubic lattice
- Calculate observables using path integral
 - Can be done numerically
 - Uses Monte-Carlo methods
- **Artifacts**
 - Finite volume/discretization
 - Masses vs. wave-lengths
Lattice calculations

- Take a **finite volume** – usually a hypercube
- **Discretize it**, and get a finite, hypercubic lattice
- Calculate observables using path integral
 - Can be done numerically
 - Uses Monte-Carlo methods
- **Artifacts**
 - Finite volume/discretization
 - Masses vs. wave-lengths
Lattice calculations

- Take a finite volume – usually a hypercube
- Discretize it, and get a finite, hypercubic lattice
- Calculate observables using path integral
 - Can be done numerically
 - Uses Monte-Carlo methods
- Artifacts
 - Finite volume/discretization
 - Masses vs. wave-lengths
 - Euclidean formulation
Masses from Euclidean propagators
Masses from Euclidean propagators

\[D(p) = \langle O^+ (p) O(-p) \rangle \]

- Masses can be inferred from propagators
Masses from Euclidean propagators

\[D(p) = \langle O^+(p)O(-p) \rangle \sim \frac{1}{p^2 + m^2} \]

- Masses can be inferred from propagators
Masses from Euclidean propagators

\[D(p) = \langle O^+ (p) O(-p) \rangle \sim \frac{1}{p^2 + m^2} \]

\[C(t) = \langle O^+ (x) O(y) \rangle \sim \exp(-m \Delta t) \]

• Masses can be inferred from propagators
Masses from Euclidean propagators

\[D(p) = \langle O^+(p)O(-p) \rangle \sim \sum \frac{a_i}{p^2 + m_i^2} \]

\[C(t) = \langle O^+(x)O(y) \rangle \sim \sum a_i \exp(-m_i \Delta t) \]

\[\sum a_i = 1 \land m_0 < m_1 < \ldots \]

- Masses can be inferred from propagators
- Long-time behavior relevant
 - No exact results on time-like momenta
Masses from Euclidean propagators

- Masses can be inferred from propagators
- Long-time behavior relevant
 - No exact results on time-like momenta
Masses from Euclidean propagators

- Masses can be inferred from propagators
- Long-time behavior relevant
 - No exact results on time-like momenta
Masses can be inferred from propagators

- Long-time behavior relevant
- No exact results on time-like momenta
Higgsonium

- Simpelst 0^+ bound state $h^+ (x) h(x)$
Higgsonium

- Simplest 0^+ bound state: $h^+(x)h(x)$
- Same quantum numbers as the Higgs
- No weak or flavor charge
Higgsonium

- Simpelst 0^+ bound state $h^+(x)h(x)$
- Same quantum numbers as the Higgs
 - No weak or flavor charge

[Maas et al. '13]
Higgsonium

- Simpelst 0^+ bound state $h^+ (x) h(x)$
- Same quantum numbers as the Higgs
 - No weak or flavor charge
Higgsonium

- Simpelst 0^+ bound state $h^+ (x) h(x)$
 - Same quantum numbers as the Higgs
 - No weak or flavor charge
 - Mass is about 120 GeV

Finite-volume effects

[Maas et al. '13]

Effective mass

Fourier transform
Higgsonium

- Simpelst 0^+ bound state $h^+(x) h(x)$
- Same quantum numbers as the Higgs
 - No weak or flavor charge
- Mass is about 120 GeV

[Maas et al. '13]
Higgsonium

- Simpelst 0^+ bound state $h^+ (x) h(x)$
 - Same quantum numbers as the Higgs
 - No weak or flavor charge
- Mass is about 120 GeV

[Maas et al. '13]
Mass relation - Higgs

- Higgsonium: 120 GeV, Higgs at tree-level: 120 GeV
 - Scheme exists to shift Higgs mass always to 120 GeV

[Fröhlich et al. PLB 80 Maas'12, Maas & Mufti'13]
Mass relation - Higgs

- Higgsonium: 120 GeV, Higgs at tree-level: 120 GeV
- Scheme exists to shift Higgs mass always to 120 GeV
- Coincidence?
Mass relation - Higgs

- Higgsonium: 120 GeV, Higgs at tree-level: 120 GeV
- Scheme exists to shift Higgs mass always to 120 GeV
- Coincidence? No.

[Fröhlich et al. PLB 80
Maas'12, Maas & Mufti'13]
Mass relation - Higgs

- Higgsonium: 120 GeV, Higgs at tree-level: 120 GeV
- Scheme exists to shift Higgs mass always to 120 GeV
- Coincidence? No.
 - Duality between elementary states and bound states

[Fröhlich et al. PLB 80]
Maas'12, Maas & Mufti'13
Mass relation - Higgs

- Higgsonium: 120 GeV, Higgs at tree-level: 120 GeV
- Scheme exists to shift Higgs mass always to 120 GeV
- Coincidence? No.
 - Duality between elementary states and bound states

\[\langle (h^+ h)(x)(h^+ h)(y) \rangle \]
Mass relation - Higgs

• Higgsonium: 120 GeV, Higgs at tree-level: 120 GeV
 • Scheme exists to shift Higgs mass always to 120 GeV
 • Coincidence? No.
 • Duality between elementary states and bound states

\[
\langle (h^+ h)(x)(h^+ h)(y) \rangle \approx h = v + \eta
\]
Mass relation - Higgs

- Higgsonium: 120 GeV, Higgs at tree-level: 120 GeV
- Scheme exists to shift Higgs mass always to 120 GeV
- Coincidence? No.
 - Duality between elementary states and bound states

\[h = v + \eta \approx \text{const.} + \langle h^+ (x) h(y) \rangle + O(\eta^3) \]

[Fröhlich et al. PLB 80, Maas'12, Maas & Mufti'13]
Mass relation - Higgs

- Higgsonium: 120 GeV, Higgs at tree-level: 120 GeV
- Scheme exists to shift Higgs mass always to 120 GeV
- Coincidence? No.
 - Duality between elementary states and bound states
 \[h = v + \eta \approx \text{const.} + \langle h^+ (x) h^+ (y) \rangle + O(\eta^3) \]
 - Same poles to leading order

[Fröhlich et al. PLB 80
Maas'12, Maas & Mufti'13]
Mass relation - Higgs

- Higgsonium: 120 GeV, Higgs at tree-level: 120 GeV
- Scheme exists to shift Higgs mass always to 120 GeV
- Coincidence? No.
 - Duality between elementary states and bound states
 \(h = v + \eta \)
 \[\langle (h^+ h)(x)(h^+ h)(y) \rangle \approx \text{const.} + \langle h^+ (x)h(y) \rangle + O(\eta^3) \]
 - Same poles to leading order
- Deeply-bound relativistic state
 - Mass defect\(\sim\)constituent mass
 - Cannot describe with quantum mechanics
 - Very different from QCD bound states

[Fröhlich et al. PLB 80
Maas'12, Maas & Mufti'13]
Comparison to Higgs

[Maas et al. '13]
Comparison to Higgs

- Same mass
- Different influence at short times
 - Can be traced back to Higgs mechanism
Isovector-vector state

- Vector state 1^- with operator $\text{tr} t^a \frac{h^+}{\sqrt{h^+ h}} D_\mu \frac{h}{\sqrt{h^+ h}}$
- Only in a Higgs phase close to a simple particle
- Higgs-flavor triplet, instead of gauge triplet
Isovector-vector state

- Vector state 1^- with operator $\text{tr} t^a \frac{h^+}{\sqrt{h^+ h}} D_\mu \frac{h}{\sqrt{h^+ h}}$
- Only in a Higgs phase close to a simple particle
- Higgs-flavor triplet, instead of gauge triplet

[Maas et al. '13]
Isovector-vector state

- Vector state 1^- with operator $\text{tr} t^a \frac{h^+}{\sqrt{h^+h}} D_\mu \frac{h}{\sqrt{h^+h}}$
 - Only in a Higgs phase close to a simple particle
 - Higgs-flavor triplet, instead of gauge triplet
 - Mass about 80 GeV
Mass relation - W

• Vector state: 80 GeV
• W at tree-level: 80 GeV
 • W not scale or scheme dependent
Mass relation - W

- Vector state: 80 GeV
- W at tree-level: 80 GeV
 - W not scale or scheme dependent
- Same mechanism

\[
\langle (h^+ D_{\mu} h)(x)(h^+ D_{\mu} h)(y) \rangle
\]
Mass relation - W

- Vector state: 80 GeV
- W at tree-level: 80 GeV
 - W not scale or scheme dependent
- Same mechanism

\[\langle (h^+ D_\mu h)(x)(h^+ D_\mu h)(y) \rangle \]

\[h = v + \eta \approx \text{const.} + \langle W_\mu(x)W_\mu(y) \rangle + O(\eta^3) \]

\[\partial v = 0 \]
Mass relation - W

• Vector state: 80 GeV
• W at tree-level: 80 GeV
 • W not scale or scheme dependent
• Same mechanism

\begin{equation}
\langle (h^+ D_\mu h)(x)(h^+ D_\mu h)(y) \rangle \\
h = v + \eta \\
\approx \text{const.} + \langle W_\mu(x) W_\mu(y) \rangle + O(\eta^3) \\
\partial v = 0
\end{equation}

• Same poles at leading order
 • At least for a light Higgs
Mass relation - W

- Vector state: 80 GeV
- W at tree-level: 80 GeV
 - W not scale or scheme dependent
- Same mechanism
 \[
 \left\langle (h^+ D_\mu h)(x)(h^+ D_\mu h)(y) \right\rangle
 \]
 \[
 h = v + \eta \\
 \approx \text{const.} + \left\langle W_\mu(x) W_\mu(y) \right\rangle + O(\eta^3)
 \]
 \[
 \partial v = 0
 \]
- Same poles at leading order
 - At least for a light Higgs
 - Remains true beyond leading order

[Fröhlich et al. PLB 80 Maas'12]
Comparison to W

[Maas et al. '13]
Comparison to W

- Same mass
- Different influence at short times
 - Not a hard mass, but decreases at high energies

[Maas et al. '13]
Ground state spectrum

[Maas et al. Unpublished, PoS'12]
Ground state spectrum

- Many states
- No simple relation to elementary states besides Higgs and W

[Maas et al. Unpublished, PoS'12]
• Many states

• No simple relation to elementary states besides Higgs and W
Ground state spectrum

- Many states
 - No simple relation to elementary states besides Higgs and W

[Maas et al. Unpublished, PoS'12]
Ground state spectrum

- Many states
- No simple relation to elementary states besides Higgs and W
Ground state spectrum

- Many states
 - No simple relation to elementary states besides Higgs and W
- Can mimic new physics
 - Note: Depends on parameters

[Maas et al. Unpublished, PoS'12]
Ground states

- For W and Higgs exist gauge-invariant composite/bound states of the same mass
 - Play the role of the experimental signatures
 - “True” physical states
 - Reason for the applicability of perturbation theory for electroweak physics
Ground states

- For W and Higgs exist gauge-invariant composite/bound states of the same mass
 - Play the role of the experimental signatures
 - "True" physical states
 - Reason for the applicability of perturbation theory for electroweak physics

- Is this always true?
 - Full standard model: Probably
 - Other parameters?
Quantum Phase Diagram
Lines of constant physics

• Lattice simulations have an intrinsic cutoff – the lattice spacing a
Lines of constant physics

- Lattice simulations have an intrinsic cutoff – the lattice spacing a
 - Full theory reached at zero lattice spacing
 - If it exists: Triviality problem
Lines of constant physics

- Lattice simulations have an intrinsic cutoff – the lattice spacing a
 - Full theory reached at zero lattice spacing
 - If it exists: Triviality problem
- Masses, couplings, and actions are specified at this scale
Lines of constant physics

- Lattice simulations have an intrinsic cutoff – the lattice spacing a
 - Full theory reached at zero lattice spacing
 - If it exists: Triviality problem
- Masses, couplings, and actions are specified at this scale
 - Numerical procedure: Calculate for several a with all independent observables fixed
 - “Lines of constant physics”
Lines of constant physics

- Lattice simulations have an intrinsic cutoff – the lattice spacing a
 - Full theory reached at zero lattice spacing
 - If it exists: Triviality problem
- Masses, couplings, and actions are specified at this scale
 - Numerical procedure: Calculate for several a with all independent observables fixed - “Lines of constant physics”
Lines of constant physics

- Lattice simulations have an intrinsic cutoff – the lattice spacing a
 - Full theory reached at zero lattice spacing
 - If it exists: Triviality problem
- Masses, couplings, and actions are specified at this scale
 - Numerical procedure: Calculate for several a with all independent observables fixed - “Lines of constant physics”
Lines of constant physics

- Lattice simulations have an intrinsic cutoff – the lattice spacing a
 - Full theory reached at zero lattice spacing
 - If it exists: Triviality problem
- Masses, couplings, and actions are specified at this scale
 - Numerical procedure: Calculate for several a with all independent observables fixed
 - “Lines of constant physics”
Lines of constant physics

- Lattice simulations have an intrinsic cutoff – the lattice spacing a
 - Full theory reached at zero lattice spacing
 - If it exists: Triviality problem
- Masses, couplings, and actions are specified at this scale
 - Numerical procedure: Calculate for several a with all independent observables fixed - “Lines of constant physics”
Lines of constant physics

- Lattice simulations have an intrinsic cutoff – the lattice spacing a
 - Full theory reached at zero lattice spacing
 - If it exists: Triviality problem
- Masses, couplings, and actions are specified at this scale
 - Numerical procedure: Calculate for several a with all independent observables fixed - “Lines of constant physics”
 - Different starting points yield different physics
Phase diagram

- (Lattice-regularized) phase diagram

![Phase diagram](image)

\[f(\text{Classical Higgs mass}) \]

\[g(\text{Classical gauge coupling}) \]

[Fradkin & Shenker PRD'79
Caudy & Greensite PRD'07]
Phase diagram

- (Lattice-regularized) phase diagram

![Diagram with axes labeled f (Classical Higgs mass) and g (Classical gauge coupling), and a note indicating a Higgs "phase".]

[Fradkin & Shenker PRD'79, Caudy & Greensite PRD'07]
Phase diagram

• (Lattice-regularized) phase diagram

[Fradkin & Shenker PRD’79
Caudy & Greensite PRD’07]
Phase diagram

- (Lattice-regularized) phase diagram

![Phase diagram with Higgs and Confinement phases]

[Phadkin & Shenker PRD’79 Caudy & Greensite PRD’07]
Phase diagram

- (Lattice-regularized) phase diagram

[Fradkin & Shenker PRD’79, Caudy & Greensite PRD’07]
Phase diagram

- (Lattice-regularized) phase diagram continuous

[Fradkin & Shenker PRD’79 Caudy & Greensite PRD’07]
Phase diagram

- (Lattice-regularized) phase diagram continuous
 - Separation only in fixed gauges

[Fradkin & Shenker PRD’79
Caudy & Greensite PRD’07]
Phase diagram

- (Lattice-regularized) phase diagram continuous
 - Separation only in fixed gauges

[Fradkin & Shenker PRD'79
Caudy & Greensite PRD'07]
Phase diagram

- (Lattice-regularized) phase diagram continuous
 - Separation only in fixed gauges
- Same asymptotic states in confinement and Higgs pseudo-phases

\[(\text{f(Classical Higgs mass)})\]
\[(\text{g(Classical gauge coupling)})\]

[Fradkin & Shenker PRD’79
Caudy & Greensite PRD’07]

1\text{st order}
Phase diagram

- (Lattice-regularized) phase diagram continuous
 - Separation only in fixed gauges
- Same asymptotic states in confinement and Higgs pseudo-phases
- Same asymptotic states irrespective of coupling strengths

[Fradkin & Shenker PRD’79 Caudy & Greensite PRD’07]
Typical spectra

[Maas, Mufti PoS'12, unpublished, Evertz et al.'86, Langguth et al.'85,'86]
Typical spectra

Higgs

W

“Higgs”

“QCD”

[Maas, Mufti PoS'12, unpublished, Evertz et al.'86, Langguth et al.'85,'86]
Typical spectra

- Generically different low-lying spectra
 - 0^{++} lighter in QCD-like region
 - 1^{--} lighter in Higgs-like region

[Maas, Mufti PoS'12, unpublished, Evertz et al.'86, Langguth et al.'85,'86]
Typical spectra

- Generically different low-lying spectra
 - 0^{++} lighter in QCD-like region
 - 1^{--} lighter in Higgs-like region
- Use as operational definition of phase

[Maas, Mufti PoS'12, unpublished, Evertz et al.'86, Langguth et al.'85,'86]
Phase diagram
Phase diagram

“Higgs”

“QCD”

- Complicated real phase diagram

[Maas, Mufti, unpublished]
Phase diagram

- Complicated real phase diagram
- QCD-like behavior even for negative bare mass

[Maas, Mufti, unpublished]
Phase diagram

- Complicated real phase diagram
- QCD-like behavior even for negative bare mass
- Similar bare couplings for both physics types

[Maas, Mufti, unpublished]
Phase diagram

- Complicated real phase diagram
- QCD-like behavior even for negative bare mass
- Similar bare couplings for both physics types
- Lower "Higgs" (0^+) mass bound: "W" (1^-) mass

[Maas, Mufti, unpublished]
Limits of perturbation theory

- Naively: Too “large” couplings
 - Landau poles around electroweak scale
Limits of perturbation theory

- Naively: Too “large” couplings
 - Landau poles around electroweak scale
- Mass relation W to 1^- may break earlier
Limits of perturbation theory

- Naively: Too “large” couplings
 - Landau poles around electroweak scale
- Mass relation W to 1^- may break earlier
Limits of perturbation theory

- Naively: Too "large" couplings
 - Landau poles around electroweak scale
- Mass relation W to 1^- may break earlier
Limits of perturbation theory

- Naively: Too “large” couplings
 - Landau poles around electroweak scale
- Mass relation W to 1^{-} may break earlier
 - Threshold in the 0^{+} channel at twice the 1^{-} mass
Limits of perturbation theory

- Naively: Too “large" couplings
 - Landau poles around electroweak scale
- Mass relation W to 1^- may break earlier
 - Threshold in the 0^+ channel at twice the 1^- mass
 - No reliable identification of asymptotic states

QCD-like
Limits of perturbation theory

- Naively: Too “large” couplings
 - Landau poles around electroweak scale
- Mass relation W to 1^- may break earlier
 - Threshold in the 0^+ channel at twice the 1^- mass
 - No reliable identification of asymptotic states
 - Depends on dynamics – right LCP?

QCD-like

[Maas, Mufti'13]
Comparability to the standard model

- 2 correct masses only fix two parameters, but 3 parameters needed
Comparability to the standard model

- 2 correct masses only fix two parameters, but 3 parameters needed
- Comparison to standard model complicated
 - States stable, no W/Z splitting
Comparability to the standard model

- 2 correct masses only fix two parameters, but 3 parameters needed
- Comparison to standard model complicated
 - States stable, no W/Z splitting
 - Couplings run differently – proceed with caution

[Maas, Mufti'13]
Lattice and Excited States
(Speculative) Consequences

• Composite states can have excitations
• Not necessarily [Wurtz et al. '13]
(Speculative) Consequences

- Composite states can have excitations
 - Not necessarily [Wurtz et al. '13]
 - Could mimic additional Higgs or Z'
(Speculative) Consequences

• Composite states can have excitations
 • Not necessarily
 [Wurtz et al. '13]
 • Could mimic additional Higgs or Z'
 • Will be suppressed as higher orders in the expansion around the vacuum field
 • Small couplings, perhaps 1% or less of gauge couplings
 • Consistent with experimental bounds
(Speculative) Consequences

- Composite states can have excitations
 - Not necessarily \cite{Wurtz et al. '13}
 - Could mimic additional Higgs or Z'
 - Will be suppressed as higher orders in the expansion around the vacuum field
 - Small couplings, perhaps 1% or less of gauge couplings
 - Consistent with experimental bounds
 - Possibly only sigma-like bumps
 - Distinction from scattering states
(Speculative) Consequences

• Composite states can have excitations
 • Not necessarily [Wurtz et al. '13]
 • Could mimic additional Higgs or Z'
 • Will be suppressed as higher orders in the expansion around the vacuum field
 • Small couplings, perhaps 1% or less of gauge couplings
 • Consistent with experimental bounds
 • Possibly only sigma-like bumps
 • Distinction from scattering states
 • Requires confirmation or exclusion
Excited states on the lattice

• Each quantum number channel has a spectrum

• Discreet in a finite volume
Excited states on the lattice

- Each quantum number channel has a spectrum
 - Discreet in a finite volume
- States can be either stable, excited states,
Excited states on the lattice

- Each quantum number channel has a spectrum
 - Discreet in a finite volume
- States can be either stable, excited states, resonances
Excited states on the lattice

- Each quantum number channel has a spectrum
 - Discreet in a finite volume
- States can be either stable, excited states, resonances or scattering states
Excited states on the lattice

Exponential volume dependency
- if stable against decays into other channels

[Luescher'85,'86,'90,'91]
Excited states on the lattice

- Excited state
- Resonances or scattering states
- Inelastic
- Elastic
- Ground state

- Exponential volume dependency
 - if stable against decays into other channels
- Polynominal (inverse) volume dependence
- Width and nature from phase shifts below the inelastic threshold

[Luescher'85,'86,'90,'91]
Excited states on the lattice

Above inelastic threshold still complicated

- Polynomial (inverse) volume dependence
- Width and nature from phase shifts below the inelastic threshold

Exponential volume dependency - if stable against decays into other channels

[Luescher'85,'86,'90,'91]
Excited states on the lattice

Spectrum

\[\text{Luescher'85,'86,'90,'91} \]
Excited states on the lattice

Ground state

[Spectrum]

[Luescher'85,'86,'90,'91]
Excited states on the lattice

Spectrum

Inelastic threshold: $H \rightarrow 2H$

Elastic threshold: $H \rightarrow 2W$

Ground state

[Luescher'85,'86,'90,'91]
Excited states on the lattice

Scattering states

Inelastic threshold: $H \rightarrow 2H$

Elastic threshold: $H \rightarrow 2W$

Ground state

[Luescher'85,'86,'90,'91]
Excited states on the lattice

Scattering states
- Inelastic threshold: $H \rightarrow 2H$
- Avoided level crossing
- Identification and widths from phase shifts
- Elastic threshold: $H \rightarrow 2W$

Ground state

[Luescher'85,'86,'90,'91]
Excited Higgs

Scattering states

Inelastic threshold

Elastic threshold

Ground state

NB: weakly coupled

[Spectrum 0^+_1]

[Maas et al. unpublished]
Excited Higgs

Scattering states

Inelastic threshold

Elastic threshold

Possible excited Higgs ~ 150 GeV

Ground state

NB: weakly coupled

[Spectrum 0^+_1]
Scattering states

Inelastic threshold

Elastic threshold

Ground state

NB: weakly coupled
Scattering states

Inelastic threshold

Identification unclear

Elastic threshold

Ground state

NB: weakly coupled
Experimental Signals
Weakly coupled experimental signals?

• Similar or identical to standard model Higgs sector
Weakly coupled experimental signals?

• Similar or identical to standard model Higgs sector

• Full non-perturbative matrix elements can be expanded in Higgs quantum fluctuations
Weakly coupled experimental signals?

- Similar or identical to standard model Higgs sector
- Full non-perturbative matrix elements can be expanded in Higgs quantum fluctuations
 - Order $<\sim 1\%$ in the standard model – weakly coupled and thus strongly suppressed
Weakly coupled experimental signals?

• Similar or identical to standard model Higgs sector

• Full non-perturbative matrix elements can be expanded in Higgs quantum fluctuations
 • Order $<\sim 1\%$ in the standard model – weakly coupled and thus strongly suppressed
 • Near W/Z or Higgs pole by construction identical to the perturbative result
Weakly coupled experimental signals?

• Similar or identical to standard model Higgs sector

• Full non-perturbative matrix elements can be expanded in Higgs quantum fluctuations
 • Order $<\sim 1\%$ in the standard model – weakly coupled and thus strongly suppressed
 • Near W/Z or Higgs pole by construction identical to the perturbative result
 • Excited states or different quantum numbers possible best signal channel
Weakly coupled experimental signals?

- Similar or identical to standard model Higgs sector
- Full non-perturbative matrix elements can be expanded in Higgs quantum fluctuations
 - Order \(<\sim 1\%\) in the standard model – weakly coupled and thus strongly suppressed
 - Near W/Z or Higgs pole by construction identical to the perturbative result
 - Excited states or different quantum numbers possible best signal channel
- Example experimental signal: Excited Higgs
 - 190 GeV mass, 19 GeV width
Impact on quartic gauge coupling
Impact on quartic gauge coupling

• (Singlet) quartic gauge coupling and resonance formation in the same channel

[Maas et al. Unpublished]
• (Singlet) quartic gauge coupling and resonance formation in the same channel
• (Singlet) quartic gauge coupling and resonance formation in the same channel
Impact on quartic gauge coupling

- (Singlet) quartic gauge coupling and resonance formation in the same channel

- Resonance peak in final state invariant mass?

[Maas et al. Unpublished]
Impact on quartic gauge coupling

• (Singlet) quartic gauge coupling and resonance formation in the same channel

• Resonance peak in final state invariant mass?
 • Estimate using effective theory + Sherpa: Too small to be seen (less than 1% at peak)
Experimental accessibility

[Maas et al. Unpublished]
Experimental accessibility

Parton 1 → Z → Z → W^+ → W^-

Parton 2

Ordinary: e.g. Higgs

[Maas et al. Unpublished]
Experimental accessibility [Maas et al. Unpublished]

- E.g. excited Higgs: Decay channel: 2W
Experimental accessibility

- Non-perturbative: \(0^{++},...,\) Additional 1% effect

- Ordinary: e.g. Higgs

- E.g. excited Higgs: Decay channel: 2W
E.g. excited Higgs: Decay channel: 2W
Experimental accessibility

\[\text{pp} \rightarrow Z W^+ W^- + <3 \text{ jets} > \rightarrow \text{anything at } \sqrt{s} = 8 \text{ TeV} \]

\[\text{pp} \rightarrow Z W^+ W^- + <3 \text{ jets} > \rightarrow \text{anything at } \sqrt{s} = 14 \text{ TeV} \]

- E.g. excited Higgs: Decay channel: 2W

[Low-energy effective Lagrangian, MC by Sherpa 1.4.2]
Experimental accessibility

<table>
<thead>
<tr>
<th>Process</th>
<th>Energy (TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pp \to Z W^+ W^- + <3$ jets \to anything</td>
<td>8</td>
</tr>
<tr>
<td>$pp \to Z W^+ W^- + <3$ jets \to anything</td>
<td>14</td>
</tr>
<tr>
<td>$e^+ e^- \to Z W W^- + <3$ jets \to anything</td>
<td>500</td>
</tr>
</tbody>
</table>

- E.g. excited Higgs: Decay channel: $2W$
- Decides whether present in the standard model
- If present standard-model physics this would be a gateway to new physics

[Low-energy effective Lagrangian, MC by Sherpa 1.4.2]

[Maas et al. Unpublished]
Experimental accessibility

Perturbative: Higgs, Z, γ

Non-perturbative: $\gamma^{\ast\ast\ast}$, ...

Additional 1% effect

- E.g. excited Higgs: Decay channel: 2W
- Decides whether present in the standard model
- If present standard-model physics this would be a gateway to new physics

Speculative

- Low-energy effective Lagrangian, MC by Sherpa 1.4.2

- 20 fb$^{-1}$
- 1000 fb$^{-1}$
- 500 fb$^{-1}$
Summary

- Higgs sector with light Higgs successfully described by perturbation theory around classical physics.
Summary

- Higgs sector with light Higgs successfully described by perturbation theory around classical physics
- Bound-state/elementary state duality
Summary

• Higgs sector with light Higgs successfully described by perturbation theory around classical physics

• Bound-state/elementary state duality
 • Highly relativistic bound states
 • Unusual structure
Summary

• Higgs sector with light Higgs successfully described by perturbation theory around classical physics
• Bound-state/elementary state duality
 • Highly relativistic bound states
 • Unusual structure
 • Permits physical interpretation of resonances in cross sections
Summary

- Higgs sector with light Higgs successfully described by perturbation theory around classical physics
- Bound-state/elementary state duality
 - Highly relativistic bound states
 - Unusual structure
 - Permits physical interpretation of resonances in cross sections
- Possibility of new excitations of bound states
 - Background for new physics searches
- If existing likely accessible at LHC/ILC
 - New experimental perspective/program
- Non-perturbatively interesting even for a light Higgs