Properties of gauge orbits

Axel Maas

18th of June 2010
XXVIII International Symposium on Lattice Field Theory
Villasimius
Sardinia/Italy
Why gauge-fixing?
Why gauge-fixing?

• Questions requiring gauge-fixing
 • Properties of elementary particles – gluons, Higgs,…
 • Gauge-dependent mechanisms, e.g. confinement
Why gauge-fixing?

• Questions requiring gauge-fixing
 • Properties of elementary particles – gluons, Higgs,…
 • Gauge-dependent mechanisms, e.g. confinement

• Supporting methods beyond the lattice, e.g. DSEs,…

• To access domains like
 • Cold, dense quark matter
 • Disparate scales, like in the standard model
 • Non-equilibrium, scattering cross-sections
Why gauge-fixing?

- Questions requiring gauge-fixing
 - Properties of elementary particles - gluons, Higgs, ...
 - Gauge-dependent mechanisms, e.g. confinement
- Supporting methods beyond the lattice, e.g. DSEs, ...
 - To access domains like
 - Cold, dense quark matter
 - Disparate scales, like in the standard model
 - Non-equilibrium, scattering cross-sections
- For simplification, like in hadron spectroscopy
Why gauge-fixing?

- Questions requiring gauge-fixing
 - Properties of elementary particles - gluons, Higgs, ...
 - Gauge-dependent mechanisms, e.g. confinement
- Supporting methods beyond the lattice, e.g. DSEs, ...
- To access domains like
 - Cold, dense quark matter
 - Disparate scales, like in the standard model
 - Non-equilibrium, scattering cross-sections
- For simplification, like in hadron spectroscopy
- Requires (not yet achieved) non-perturbative control
Basics of gauge-fixing

• Important basic quantity: Correlation functions

• Propagators and vertices

• Gauge-dependent in general
Basics of gauge-fixing

- Important basic quantity: Correlation functions
- Propagators and vertices
- Gauge-dependent in general
- Requires gauge-fixing to determine
Basics of gauge-fixing

• Important basic quantity: Correlation functions

• Propagators and vertices

• Gauge-dependent in general

• Requires gauge-fixing to determine

• Local gauge conditions sufficient in perturbation theory

• Landau gauge: $\partial^\mu A^a_\mu = 0$
Basics of gauge-fixing

• Important basic quantity: **Correlation functions**

 • Propagators and vertices

 • Gauge-dependent in general

• Requires gauge-fixing to determine

• Local gauge conditions sufficient in perturbation theory

 • Landau gauge: \(\partial^\mu A_\mu^a = 0 \)

 • Equivalent: Condition on a correlation function, the gluon propagator: \(p^\mu p^\nu D^{ab}_{\mu\nu} = 0 \)
Non-perturbative gauge-fixing [Gribov 1978, Singer 1978]

- Beyond perturbation theory local conditions insufficient
 - Gribov-Singer ambiguity due to Gribov copies
 - Requires a well-defined and method-independent resolution
Non-perturbative gauge-fixing [Gribov 1978, Singer 1978]

- Beyond perturbation theory local conditions insufficient
 - Gribov-Singer ambiguity due to Gribov copies
 - Requires a well-defined and method-independent resolution
- Correlation functions contain all information
Non-perturbative gauge-fixing [Gribov 1978, Singer 1978]

- Beyond perturbation theory local conditions insufficient
 - Gribov-Singer ambiguity due to Gribov copies
 - Requires a well-defined and method-independent resolution
- Correlation functions contain all information
- If two gauges are different they differ at least in one correlation function
Non-perturbative gauge-fixing

- Beyond perturbation theory local conditions insufficient
 - Gribov-Singer ambiguity due to Gribov copies
 - Requires a well-defined and method-independent resolution
- Correlation functions contain all information
- If two gauges are different they differ at least in one correlation function
- Gauges can be specified by imposing conditions on the correlation functions

[Maas 2008, 2009]
Gauge (re)construction [Maas, 2009]

- Basic building blocks to (re)construct a gauge
Gauge (re)construction [Maas, 2009]

- **Basic building blocks to (re)construct a gauge**

- **Gluon propagator** $D_{\mu\nu}^{ab}$ [Zwanziger, 1990s+2000s, many others]

- **Total trace** $(-) \int d^d p D_{\mu\mu}^{aa}$

- **Connected to the fundamental modular domain**
Gauge (re)construction

• Basic building blocks to (re)construct a gauge

• **Gluon propagator** $D_{\mu \nu}^{ab}$
 - **Total trace** $(\; - \;) \int d^d p \, D_{\mu \mu}^{aa}$
 - Connected to the fundamental modular domain

• **Ghost propagator** D_{G}^{ab}
 - **B-parameter** $B=\lim_{p \to 0} p^2 D_{G}^{aa}(p)/\mu^2 D_{G}^{aa}(\mu)$
 - Generates a one-parameter family of correlation functions in the continuum
 - **Assume:** Positive only in the 1st Gribov region
Distribution in trD-B-space [Maas 2009, unpublished]

- Projection of the first Gribov region
- Positive Faddeev-Popov operator

3d, 26^3, beta=3.47, 39 copies per configuration
Distribution in $trD-B$-space

$V=(5.7 \text{ fm})^3$

3d, 26^3, $\beta=3.47$, 39 copies per configuration

- Projection of the first Gribov region
- Positive Faddeev-Popov operator
Distribution in trD-B-space [Maas 2009, unpublished]

- $V=(5.7 \text{ fm})^3$
- $3d, 26^3, \beta=3.47, 39$ copies per configuration

- Projection of the first Gribov region
- Positive Faddeev-Popov operator
- Uncorrelated for different Gribov copies
Constructing gauges – independent of a method

[Maas 2009]

• Select a permitted (set of) constraint(s)
Constructing gauges - independent of a method

[Maas 2009]

- Select a permitted (set of) constraint(s)
- If a complete specification: Done
Constructing gauges – independent of a method

[Maas 2009]

- Select a permitted (set of) constraint(s)
 - If a complete specification: Done
 - If not: There exist Gribov copies degenerate in the constraints
 - Select randomly among degenerate Gribov copies
 - Resulting correlation functions will be averages over all other possible constraints
Possible gauges [Maas 2009, unpublished]

- **Minimal Landau gauge:**
 No further constraint
Possible gauges [Maas 2009, unpublished]

\[b = G(0.280 \text{ GeV})/G(\infty \text{ GeV}) \text{ for } V = (4.4 \text{ fm})^3 \]

Average: 2.97

- Minimal Landau gauge:
 - No further constraint
Possible gauges

- **Minimal Landau gauge:**
 - No further constraint
Constructing gauges – independent of a method

[Maas 2009]

- Select a permitted (set of) constraint(s)
 - If a complete specification: Done
 - If not: There exist Gribov copies degenerate in the constraints
 - Select randomly among degenerate Gribov copies
 - Resulting correlation functions will be averages over all other possible constraints
 - Always: Inside first Gribov region
 - Can be implemented in all methods
Possible gauges

- **Minimal Landau gauge**: No further constraint
Possible gauges

- **Minimal Landau gauge:**
 No further constraint

- **Absolute Landau gauge:**
 Require minimal $|\text{tr}D|$
Possible gauges

- **Minimal Landau gauge:**
 No further constraint

- **Absolute Landau gauge:**
 Require minimal $|\text{trD}|$

- **MaxB gauge:**
 Require maximum B
Possible gauges

- **Minimal Landau gauge:**
 No further constraint

- **Absolute Landau gauge:**
 Require minimal $|\text{tr}D|$

- **MaxB gauge:**
 Require maximum B

- **Others possible**
 - Minimize B or trD, combined constraints, averages,...
Obstacles...

- **What are permitted constraints?**
 - Requires knowledge of all Gribov copies: Gribov problem
Severity of the Gribov problem

Number of Gribov copies at $a \approx 0.22 \text{ fm}$

- Number of Gribov copies rises strongly with volume
Severity of the Gribov problem

- Number of Gribov copies rises strongly with volume...
- ...but also with discretization!

[Maas 2009, Mehta et al. 2009]
Obstacles...

- **What are permitted constraints?**
 - Requires knowledge of all Gribov copies: Gribov problem
 - Requires eg to know permitted range of B or trD value
Permitted corridors

\[\text{trD corridor} \]

\[\text{Maas 2009, unpublished} \]

\[\text{3d, } a=0.22 \text{ fm} \]

- \textbf{trD: (small) range scales strongly with discretization}
Permitted corridors

- trD: (small) range scales strongly with discretization
- B: Opens up with volume

[Maas 2009, unpublished]
Obstacles...

- **What are permitted constraints?**
 - Requires knowledge of all Gribov copies: Gribov problem
 - Requires eg to know permitted range of B or trD value

- **How many constraints are possible?**
 - Unknown – but no hints for more than just one
 - Known constraints are related to free renormalization conditions – relevance?
Obstacles...

- **What are permitted constraints?**
 - Requires knowledge of all Gribov copies: Gribov problem
 - Requires eg to know permitted range of B or trD value

- **How many constraints are possible?**
 - Unknown – but no hints for more than just one
 - Known constraints are related to free renormalization conditions – relevance?

- Unspecified constraints: Outside lattice gauge theory knowledge of undetermined averages required
Ghosts and gluons (in 3d) [Maas 2009, unpublished]

- **Ghosts strongly dependent up to 1 GeV**

 Bornyakov et al. 2009

[Compare: e.g. Bornyakov et al. 2009]
Ghosts and gluons (in 3d) [Maas 2009, unpublished]

- Ghosts strongly dependent up to 1 GeV
- Gluons not very sensitive beyond 100 MeV

[Compare: e.g. Bornyakov et al. 2009]
Coupling and matter [Maas 2009, unpublished]

- Derived quantities inherit dependencies

Effective coupling

![Graph showing the relationship between effective coupling (\(\alpha/p\)) and momentum (p) for 3d, L=4.4 fm, a=0.17 fm.](image)
Coupling and matter [Maas 2009, unpublished]

Effective coupling

- Derived quantities inherit dependencies
- Matter fields weakly influenced

Scalar - Confinement phase

Renormalized mass is 1 at 1.5
- Minimal Landau gauge
- MaxB Landau gauge
- Absolute Landau gauge

\[1/(p^2 + 1^2) \]

3d, \(L=4.4 \text{ fm}, a=0.17 \text{ fm} \)

4d, confinement: beta=2.0, kappa=0.25, lambda=0.5
Summary

Read more: arXiv: 0808.3047, 0810.1987, 0907.5185
Summary

• **Gauge-fixing is necessary for many questions and practical applications**

Read more: arXiv: 0808.3047, 0810.1987, 0907.5185
Summary

- **Gauge-fixing is necessary for many questions and practical applications**

- **Understanding gauge-fixing is required to have control in these cases**

- **Beyond perturbation theory effects up-to the characteristic scale (1 GeV for QCD) in some quantities**

Read more: arXiv: 0808.3047, 0810.1987, 0907.5185
Summary

- Gauge-fixing is necessary for many questions and practical applications
- Understanding gauge-fixing is required to have control in these cases
- Beyond perturbation theory effects up-to the characteristic scale (1 GeV for QCD) in some quantities
- Well-defined non-perturbative gauges possible
 - Construction based on correlation functions
 - Can provide a well-defined framework
 - Decoupling vs. scaling is possibly just a gauge choice?

Read more: arXiv: 0808.3047, 0810.1987, 0907.5185