Towards Higgs Sector Spectroscopy

Axel Maas

02nd of November 2012
TRIUMF
Vancouver
Canada
What is non-perturbative?
What is non-perturbative?

- Strong interactions are non-perturbative
What is non-perturbative?

- Strong interactions are non-perturbative
 - Like QCD
What is non-perturbative?

- Strong interactions are non-perturbative
 - Like QCD
 - But not always: Asymptotic freedom
What is non-perturbative?

- Strong interactions are non-perturbative
 - Like QCD
 - But not always: Asymptotic freedom
- Weak interactions can be non-perturbative
What is non-perturbative?

- Strong interactions are non-perturbative
 - Like QCD
 - But not always: Asymptotic freedom
- Weak interactions can be non-perturbative
 - QED is weakly interacting
What is non-perturbative?

- Strong interactions are non-perturbative
 - Like QCD
 - But not always: Asymptotic freedom
- Weak interactions can be non-perturbative
 - QED is weakly interacting, but has non-perturbative features
What is non-perturbative?

- Strong interactions are non-perturbative
 - Like QCD
 - But not always: Asymptotic freedom
- Weak interactions can be non-perturbative
 - QED is weakly interacting, but has non-perturbative features like atoms, molecules
What is non-perturbative?

- Strong interactions are non-perturbative
 - Like QCD
 - But not always: Asymptotic freedom
- Weak interactions can be non-perturbative
 - QED is weakly interacting, but has non-perturbative features like atoms, molecules, matter with phase structure,...
What is non-perturbative?

• Strong interactions are non-perturbative
 • Like QCD
 • But not always: Asymptotic freedom

• Weak interactions can be non-perturbative
 • QED is weakly interacting, but has non-perturbative features like atoms, molecules, matter with phase structure,…
 • Bound states, phase transitions,…
What is non-perturbative?

- Strong interactions are non-perturbative
 - Like QCD
 - But not always: Asymptotic freedom
- Weak interactions can be non-perturbative
 - QED is weakly interacting, but has non-perturbative features like atoms, molecules, matter with phase structure,…
 - Bound states, phase transitions,…
- Are there (relevant) non-perturbative effects in the weak interactions and the Higgs?
Overview

• The Standard model and the Higgs
Overview

• The Standard model and the Higgs
• Standard approach to the Higgs
Overview

• The Standard model and the Higgs
• Standard approach to the Higgs
• Full non-perturbative treatment
Overview

• The Standard model and the Higgs
• Standard approach to the Higgs
• Full non-perturbative treatment
• Properties of the W and the Higgs
Overview

• The Standard model and the Higgs
• Standard approach to the Higgs
• Full non-perturbative treatment
• Properties of the W and the Higgs
• Bound states
Overview

• The Standard model and the Higgs
• Standard approach to the Higgs
• Full non-perturbative treatment
• Properties of the W and the Higgs
• Bound states
• Particle/bound-state duality
Overview

• The Standard model and the Higgs
• Standard approach to the Higgs
• Full non-perturbative treatment
• Properties of the W and the Higgs
• Bound states
• Particle/bound-state duality
• Consequences
 • Spectroscopy and excited states
• Summary
The Standard Model
Particles

• The standard model (until now) describes the physics accessible in accelerator-based experiments
Particles

• The standard model (until now) describes the physics accessible in accelerator-based experiments

• Contains two kinds of particles
Particles

• The standard model (until now) describes the physics accessible in accelerator-based experiments

• Contains two kinds of particles

• Matter
Particles

- The standard model (until now) describes the physics accessible in accelerator-based experiments
- Contains two kinds of particles
- Matter
 - 6 flavors of quarks
Particles

- The standard model (until now) describes the physics accessible in accelerator-based experiments
- Contains two kinds of particles
- Matter
 - 6 flavors of quarks
 - 6 flavors of leptons
Particles

• The standard model (until now) describes the physics accessible in accelerator-based experiments

• Contains two kinds of particles

• Matter
 • 6 flavors of quarks
 • 6 flavors of leptons

• Force particles
Particles

- The standard model (until now) describes the physics accessible in accelerator-based experiments
- Contains two kinds of particles
 - Matter
 - 6 flavors of quarks
 - 6 flavors of leptons
 - Force particles
 - Photon
Particles

• The standard model (until now) describes the physics accessible in accelerator-based experiments

• Contains two kinds of particles

• Matter
 • 6 flavors of quarks
 • 6 flavors of leptons

• Force particles
 • Photon, gluon
Particles

- The standard model (until now) describes the physics accessible in accelerator-based experiments
- Contains two kinds of particles
- Matter
 - 6 flavors of quarks
 - 6 flavors of leptons
- Force particles
 - Photon, gluon, W- and Z-boson
Particles

- The standard model (until now) describes the physics accessible in accelerator-based experiments
- Contains two kinds of particles
 - Matter
 - 6 flavors of quarks
 - 6 flavors of leptons
 - Force particles
 - Photon, gluon, W- and Z-boson
- Higgs is a bit of both, but more like matter
Particles

• The standard model (until now) describes the physics accessible in accelerator-based experiments

• Contains two kinds of particles

 • Matter
 • 6 flavors of quarks
 • 6 flavors of leptons

 • Force particles
 • Photon, gluon, W- and Z-boson

• Higgs is a bit of both, but more like matter
 • Possibly recently observed
The properties of the particles

- The properties of the particles are different
The properties of the particles

- The properties of the particles are different

Quarks: Fermions

Masses:
Up: 2-3 MeV
Down: 4-6 MeV
Strange: 80-130 MeV
Charm: 1270(10) MeV
Bottom: 4190(200) MeV
Top: 172000(1500) MeV
The properties of the particles

- The properties of the particles are different

Quarks: Fermions
- u, c, t
- d, s, b

Leptons: Fermions
- \(\nu_e, \nu_\mu, \nu_\tau \)
- e, \(\mu \), \(\tau \)

Masses:
- Up: 2-3 MeV
- Down: 4-6 MeV
- Strange: 80-130 MeV
- Charm: 1270(10) MeV
- Bottom: 4190(200) MeV
- Top: 172000(1500) MeV

- Electron: 0.5 MeV
- Muon: 106 MeV
- Tauon: 1777 MeV

Neutrinos:
- Masses < 0.3 eV
- Mass hierarchy unknown
- Masses are different
The properties of the particles

- The properties of the particles are different

<table>
<thead>
<tr>
<th>Quarks: Fermions</th>
<th>Leptons: Fermions</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>(\nu_e)</td>
</tr>
<tr>
<td>c</td>
<td>(\nu_\mu)</td>
</tr>
<tr>
<td>t</td>
<td>(\nu_\tau)</td>
</tr>
<tr>
<td>d</td>
<td>e</td>
</tr>
<tr>
<td>s</td>
<td>(\mu)</td>
</tr>
<tr>
<td>b</td>
<td>(\tau)</td>
</tr>
</tbody>
</table>

Masses:
- Up: 2-3 MeV
- Down: 4-6 MeV
- Strange: 80-130 MeV
- Charm: 1270(10) MeV
- Bottom: 4190(200) MeV
- Top: 172000(1500) MeV

<table>
<thead>
<tr>
<th>Neutrinos:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masses:</td>
</tr>
<tr>
<td>< 0.3 eV</td>
</tr>
<tr>
<td>Mass hierarchy unknown</td>
</tr>
<tr>
<td>Masses are different</td>
</tr>
</tbody>
</table>

Photon: Massless boson
The properties of the particles

- The properties of the particles are different

Quarks: Fermions

<table>
<thead>
<tr>
<th></th>
<th>Masses</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>Up: 2-3 MeV</td>
</tr>
<tr>
<td>c</td>
<td>Down: 4-6 MeV</td>
</tr>
<tr>
<td>t</td>
<td>Strange: 80-130 MeV</td>
</tr>
<tr>
<td>d</td>
<td>Charm: 1270(10) MeV</td>
</tr>
<tr>
<td>s</td>
<td>Bottom: 4190(200) MeV</td>
</tr>
<tr>
<td>b</td>
<td>Top: 172000(1500) MeV</td>
</tr>
</tbody>
</table>

Leptons: Fermions

<table>
<thead>
<tr>
<th></th>
<th>Masses</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>Electron: 0.5 MeV</td>
</tr>
<tr>
<td>μ</td>
<td>Muon: 106 MeV</td>
</tr>
<tr>
<td>τ</td>
<td>Tauon: 1777 MeV</td>
</tr>
<tr>
<td>νe</td>
<td>Neutrinos:</td>
</tr>
<tr>
<td>νμ</td>
<td>Masses < 0.3 eV</td>
</tr>
<tr>
<td>ντ</td>
<td>Mass hierarchy unknown</td>
</tr>
<tr>
<td>νχ</td>
<td>Masses are different</td>
</tr>
</tbody>
</table>

\(\gamma\) Photon: Massless boson
\(g\) Gluon: Massless boson
The properties of the particles

- The properties of the particles are different

Quarks: Fermions

<table>
<thead>
<tr>
<th>Quark</th>
<th>Masses</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>Up: 2-3 MeV</td>
</tr>
<tr>
<td>c</td>
<td>Down: 4-6 MeV</td>
</tr>
<tr>
<td>t</td>
<td>Strange: 80-130 MeV</td>
</tr>
<tr>
<td>d</td>
<td>Charm: 1270(10) MeV</td>
</tr>
<tr>
<td>s</td>
<td>Bottom: 4190(200) MeV</td>
</tr>
<tr>
<td>b</td>
<td>Top: 172000(1500) MeV</td>
</tr>
</tbody>
</table>

Leptons: Fermions

<table>
<thead>
<tr>
<th>Lepton</th>
<th>Masses</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>Electron: 0.5 MeV</td>
</tr>
<tr>
<td>(\nu_e)</td>
<td>Muon: 106 MeV</td>
</tr>
<tr>
<td>(\nu_\mu)</td>
<td>Tauon: 1777 MeV</td>
</tr>
</tbody>
</table>

Neutrinos:
- Masses < 0.3 eV
- Mass hierarchy unknown
- Masses are different

\(\gamma\) Photon: Massless boson
\(g\) Gluon: Massless boson

Weak gauge bosons

\(\text{W} \quad \text{Z}\)
- W: 80375(23) MeV
- Z: 91188(2) MeV
The properties of the particles

- The properties of the particles are different

Quarks: Fermions
- u
- c
- t
- d
- s
- b

Leptons: Fermions
- ν_e
- ν_μ
- ν_τ
- e
- μ
- τ

Higgs: Boson
- h

Masses:
- Electron: 0.5 MeV
- Muon: 106 MeV
- Tauon: 1777 MeV
- Neutrinos:
 - Masses < 0.3 eV
 - Mass hierarchy unknown

Masses are different

Photons: Massless bosons
- γ

Gluons: Massless bosons
- g

Masses:
- Up: 2-3 MeV
- Down: 4-6 MeV
- Strange: 80-130 MeV
- Charm: 1270(10) MeV
- Bottom: 4190(200) MeV
- Top: 172000(1500) MeV

Weak gauge bosons
- W
- Z

Higgs: Boson
- Mass: 125000 MeV?

Sectors

\[\text{u, c, t, g, h} \]
\[\text{d, s, b, W} \]
\[\text{\(\nu_e\), \(\nu_\mu\), \(\nu_\tau\), Z} \]
\[\text{e, \(\mu\), \(\tau\), \(\gamma\)} \]
Sectors

- The force particles mediate the forces between the matter particles
• The force particles mediate the forces between the matter particles

• Each force particle can be associated with a particular force or sector of the standard model
Sectors

- Particles can be grouped according to the forces
Sectors

- Particles can be grouped according to the forces
 - Electromagnetic sector
Sectors

- Particles can be grouped according to the forces
 - Electromagnetic sector
 - The strong sector

- Electromagnetic sector
- Strong sector

Particles: ν_e, ν_μ, ν_τ
Particles can be grouped according to the forces:

- **Electromagnetic sector**
- **The strong sector**
- **The weak sector**
Sectors

<table>
<thead>
<tr>
<th>Strong sector</th>
<th>Electromagnetic sector</th>
<th>Weak sector</th>
<th>Higgs sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>uct</td>
<td>(\gamma)</td>
<td>h</td>
</tr>
<tr>
<td>d</td>
<td>W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>Z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>v_e</td>
<td>v_\mu</td>
<td>v_\tau</td>
</tr>
<tr>
<td>(\mu)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tau)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Particles can be grouped according to the forces
 - Electromagnetic sector
 - The strong sector
 - The weak sector
 - The Higgs sector
Sectors

- Particles can be grouped according to the forces
 - Electromagnetic sector
 - The strong sector
 - The weak sector
 - The Higgs sector – actually 13 different interactions
The Higgs sector
The Higgs effect

- The Higgs is assumed to create much of the mass
The Higgs effect

• The Higgs is assumed to create much of the mass
The Higgs effect

- The Higgs is assumed to create much of the mass
- Mechanism: “Higgs condenses”
The Higgs effect

- The Higgs is assumed to create much of the mass
- Mechanism: “Higgs condenses and the particles are slowed (gain mass)”
The Higgs effect

- The Higgs is assumed to create much of the mass
- Mechanism: “Higgs condenses and the particles are slowed (gain mass)”
- Higgs only particle which has a static mass
The elusiveness of the Higgs
The elusiveness of the Higgs

- Higgs couples to a particle proportional to its mass
The elusiveness of the Higgs

- Higgs couples to a particle proportional to its mass

[ATLAS & CMS, '11+'12 data]

CMS Preliminary
\[\bar{s} = 7 \text{ TeV}, L = 5.1 \text{ fb}^{-1} \]
\[\bar{s} = 8 \text{ TeV}, L = 5.3 \text{ fb}^{-1} \]

\[\Sigma \text{ weights / } 2 \text{ GeV} \]

\[m_{\gamma \gamma} \text{ (GeV)} \]
The elusiveness of the Higgs

- Higgs couples to a particle proportional to its mass
- Counting experiment – no theory input

[ATLAS & CMS, '11+'12 data]
The elusiveness of the Higgs

- Higgs couples to a particle proportional to its mass
- Counting experiment – no theory input
- Possibly observed at 125 GeV – Assume to be right
The elusiveness of the Higgs

- Higgs couples to a particle proportional to its mass
- Counting experiment – no theory input
- Possibly observed at 125 GeV – Assume to be right
 - Required ~ 10 fb$^{-1}$ to observe
The trouble with the Higgs

• Why is there a problem?
The trouble with the Higgs

- Why is there a problem?
- Higgs mass is very sensitive to quantum corrections
 - Standard model coupling constants fine-tuned by 14 orders of magnitude (!) for a 125 GeV Higgs mass
 - So-called hierarchy problem
The trouble with the Higgs

- Why is there a problem?
- Higgs mass is very sensitive to quantum corrections
 - Standard model coupling constants fine-tuned by 14 orders of magnitude (!) for a 125 GeV Higgs mass
 - So-called hierarchy problem
- Consistency of a theory with Higgs is unproven
 - Theory could be only valid with a cutoff (trivial)
The trouble with the Higgs

[Introduction: Morrissey et al. '09]

• Why is there a problem?

• Higgs mass is very sensitive to quantum corrections
 • Standard model coupling constants fine-tuned by 14 orders of magnitude (!) for a 125 GeV Higgs mass
 • So-called hierarchy problem

• Consistency of a theory with Higgs is unproven
 • Theory could be only valid with a cutoff (trivial)

• The coupling of the Higgs to matter is arbitrary
 • Only description of the masses of quarks and leptons
The trouble with the Higgs

- Why is there a problem?
- Higgs mass is very sensitive to quantum corrections
 - Standard model coupling constants fine-tuned by 14 orders of magnitude (!) for a 125 GeV Higgs mass
 - So-called hierarchy problem
- Consistency of a theory with Higgs is unproven
 - Theory could be only valid with a cutoff (trivial)
- The coupling of the Higgs to matter is arbitrary
 - Only description of the masses of quarks and leptons
- Triggered many proposals for alternatives
 - Supersymmetry, Technicolor,...
The basic task

- Describe the Higgs sector of the standard model
The basic task

• Describe the Higgs sector of the standard model

• 12+ orders of magnitude of scales
 • Neutrino mass to electroweak scale
The basic task

• Describe the Higgs sector of the standard model

• 12+ orders of magnitude of scales
 • Neutrino mass to electroweak scale

• Chiral theory
The basic task

• Describe the Higgs sector of the standard model
• 12+ orders of magnitude of scales
 • Neutrino mass to electroweak scale
• Chiral theory
• Strong interactions of the quarks – QCD
The basic task

• Describe the Higgs sector of the standard model

• 12+ orders of magnitude of scales
 • Neutrino mass to electroweak scale

• Chiral theory

• Strong interactions of the quarks – QCD

• Strongly-interacting chiral gauge theory
The basic task

- Describe the Higgs sector of the standard model
- 12+ orders of magnitude of scales
 - Neutrino mass to electroweak scale
- Chiral theory
- Strong interactions of the quarks – QCD
- Strongly-interacting chiral gauge theory
- Simplify: Just weak gauge bosons and the Higgs
The task at hand

• Describe W and the Higgs
The task at hand

- Describe W and the Higgs
 - Higgs sector alone well understood [Callaway, PR'88]
 - So-called sigma model
 - Only with a cutoff well-defined
The task at hand

• Describe W and the Higgs
 • Higgs sector alone well understood \[\text{Callaway, PR'88}\]
 • So-called sigma model
 • Only with a cutoff well-defined
 • W sector alone more complicated \[\text{Maas, PR'13}\]
 • Yang-Mills theory
 • Gauge theory
 • Strongly interacting
The task at hand

- Describe W and the Higgs
 - Higgs sector alone well understood [Callaway, PR'88]
 - So-called sigma model
 - Only with a cutoff well-defined
 - W sector alone more complicated [Maas, PR'13]
 - Yang-Mills theory
 - Gauge theory
 - Strongly interacting
- Next stop: Higgs+W sector
The task at hand

- Describe W and the Higgs
 - Higgs sector alone well understood [Callaway, PR'88]
 - So-called sigma model
 - Only with a cutoff well-defined
 - W sector alone more complicated [Maas, PR'13]
 - Yang-Mills theory
 - Gauge theory
 - Strongly interacting
- Next stop: Higgs+W sector
 [Lang et al., Münster et al., ALPHA collaboration, Wittig et al., Jansen et al., Rummukainen et al.]
The task at hand

• Describe W and the Higgs
 • Higgs sector alone well understood [Callaway, PR'88]
 • So-called sigma model
 • Only with a cutoff well-defined
 • W sector alone more complicated [Maas, PR'13]
 • Yang-Mills theory
 • Gauge theory
 • Strongly interacting

• Next stop: Higgs+W sector [Lang et al., Münster et al., ALPHA collaboration, Wittig et al., Jansen et al., Rummukainen et al.]

• Also investigations of Higgs+Yukawa [Gerhold et al. PLB’11]
Standard description
Standard description: Perturbation theory
The Higgs sector as a gauge theory

- The Higgs sector is a gauge theory
The Higgs sector as a gauge theory

- The Higgs sector is a gauge theory

\[L = -\frac{1}{4} W^a_{\mu\nu} W^{\mu\nu}_a \]

\[W^a_{\mu\nu} = \partial_\mu W^a_\nu - \partial_\nu W^a_\mu \]

- WS

\[W^a_\mu \]
The Higgs sector as a gauge theory

- The Higgs sector is a gauge theory

\[L = -\frac{1}{4} W^a_{\mu \nu} W^{\mu \nu}_a \]

\[W^a_{\mu \nu} = \partial_\mu W^a_\nu - \partial_\nu W^a_\mu + g f^{a}_{b c} W^b_{\mu} W^c_\nu \]

- Ws

- Coupling \(g \) and some numbers \(f^{abc} \)
The Higgs sector as a gauge theory

- The Higgs sector is a gauge theory

\[L = -\frac{1}{4} W^a_{\mu \nu} W^{\mu \nu}_a \]

\[W^a_{\mu \nu} = \partial_\mu W^a_\nu - \partial_\nu W^a_\mu + g f^{a}_{bc} W^b_\mu W^c_\nu \]

- Ws

\[W^a_\mu \]

- No QED: Ws and Zs are degenerate

- Coupling \(g \) and some numbers \(f^{abc} \)
The Higgs sector as a gauge theory

- The Higgs sector is a gauge theory

\[L = -\frac{1}{4} W^a_{\mu\nu} W^a_{\mu\nu} + (D^i_{\mu} h^i) + D^i_{ik} h_k \]

\[W^a_{\mu\nu} = \partial_\mu W^a_\nu - \partial_\nu W^a_\mu + gf^{a}_{bc} W^b_{\mu} W^c_{\nu} \]

\[D^i_{\mu} = \delta^i_{\mu} \partial_\mu \]

- Ws \quad W^a_\mu

- Higgs \quad h_i

- No QED: Ws and Zs are degenerate

- Coupling \(g \) and some numbers \(f^{abc} \)
The Higgs sector as a gauge theory

- The Higgs sector is a gauge theory

\[L = -\frac{1}{4} W^a_{\mu\nu} W^{\mu\nu}_a + \left(D^{ij}_\mu h^j\right) + D^\mu_{ik} h_k \]

\[W^a_{\mu\nu} = \partial_\mu W^a_\nu - \partial_\nu W^a_\mu + g f^{a}_{bc} W^b_\mu W^c_\nu \]

\[D^{ij}_\mu = \delta^{ij} \partial_\mu - ig W^a_\mu t^{ij}_a \]

- Ws

\[W^a_\mu \]

- Higgs

\[h_i \]

- No QED: Ws and Zs are degenerate

- Coupling \(g \) and some numbers \(f^{abc} \) and \(t^{ij}_a \)
The Higgs sector as a gauge theory

- The Higgs sector is a gauge theory

\[
L = -\frac{1}{4} W^a_{\mu \nu} W^{\mu \nu}_a + (D^i j h^j)^+ D^i k h_k + \lambda (h^a h^+_a - \nu^2)^2
\]

- Ws

\[
W^a_{\mu \nu} = \partial_\mu W^a_\nu - \partial_\nu W^a_\mu + g f^{a}_{\mu} W^b_\mu W^c_\nu
\]

- Higgs

\[
D^i j = \delta^i j \partial_\mu - i g W^a_\mu t^i^a
\]

- No QED: Ws and Zs are degenerate

- Couplings g, \nu, \lambda and some numbers \(f^{abc}\) and \(t^i^a\)
Symmetries

\[L = - \frac{1}{4} W^a_{\mu \nu} W^a_{\mu \nu} + (D^i_j h^j) + D^i_{ik} h_k + \lambda (h^a h^+_a - v^2)^2 \]

\[W^a_{\mu \nu} = \partial^a_{\mu} W^{a}_{\nu} - \partial^a_{\nu} W^{a}_{\mu} + g f^a_{bc} W^b_{\mu} W^c_{\nu} \]

\[D^i_{ij} = \delta^i_j \partial^i_{\mu} - ig W^a_{\mu} t^a_{ij} \]
Symmetries

\[
L = -\frac{1}{4} W^a_{\mu \nu} W_{a \mu \nu} + (D^j_{\mu} h^j) + D_{ik}^u h_k + \lambda (h^a h_a^+ - \nu^2)^2
\]

\[
W^a_{\mu \nu} = \partial_\mu W^a_\nu - \partial_\nu W^a_\mu + gf_{bc}^a W^b_\mu W^c_\nu
\]

\[
D_{ij}^\mu = \delta_{ij} \partial_\mu - ig W^a_\mu t_{ij}^a
\]

• Local SU(2) gauge symmetry

 • Invariant under arbitrary gauge transformations \(\phi^a(x) \)

\[
W^a_\mu \rightarrow W^a_\mu + (\delta_b^a \partial_\mu - g f_{bc}^a W^c_\mu) \phi^b
\]

\[
h_i \rightarrow h_i + g t_{ij}^a \phi^a h_j
\]
Symmetries

\[
L = -\frac{1}{4} W^a_{\mu \nu} W^a_{\mu \nu} + (D^i_j h^j) + D^i_k h^k + \lambda (h^a h^a + - v^2)^2
\]

\[
W^a_{\mu \nu} = \partial_\mu W^a_\nu - \partial_\nu W^a_\mu + gf^{a}_{bc} W^b_\mu W^c_\nu
\]

\[
D^i_j = \delta^{ij} \partial_\mu - ig W^a_\mu t^i_a
\]

- Local SU(2) gauge symmetry
 - Invariant under arbitrary gauge transformations \(\phi^a(x) \)
 \[
 W^a_\mu \rightarrow W^a_\mu + (\delta^a_b \partial_\mu - gf^{a}_{bc} W^c_\mu) \phi^b
 \]
 \[
 h_i \rightarrow h_i + g t^i_j \phi^a h_j
 \]
- Global SU(2) Higgs flavor symmetry
 - Acts as right-transformation on the Higgs field only
 \[
 W^a_\mu \rightarrow W^a_\mu
 \]
 \[
 h_i \rightarrow h_i + a^i_j h_j + b^i_j h_j^*
 \]
Elementary states

\[L = -\frac{1}{4} W^a_{\mu \nu} W^\mu_\nu + (D^i_j h^j) + D^\mu_{ik} h_k + \lambda (h^a h^a + - \nu^2)^2 \]

\[W^a_{\mu \nu} = \partial_{\mu} W^a_\nu - \partial_{\nu} W^a_\mu + gf^{a}_{bc} W^b_\mu W^c_\nu \]

\[D^i_j = \delta^i_j \partial_{\mu} - igW^a_\mu t^{ij}_a \]
Elementary states

$$L = -\frac{1}{4} W^a_{\mu \nu} W_a^{\mu \nu} + (D^i_{\mu} h^i) + D^\mu_{ik} h_k + \lambda (h^a h_a^+ - v^2)^2$$

$$W^a_{\mu \nu} = \partial_\mu W^a_\nu - \partial_\nu W^a_\mu + g f^a_{bc} W^b_\mu W^c_\nu$$

$$D^i_{\mu} = \delta^i_{\mu} \partial_\mu - i g W^a_\mu t^i_a$$

• Higgs field is not gauge-invariant
Elementary states

\[
L = -\frac{1}{4} W^a_{\mu \nu} W^a_{\nu \mu} + (D^i_j h^j) + D^i_k h^i_k + \lambda (h^a h_a^+ - \nu^2)^2
\]

\[
W^a_{\mu \nu} = \partial_\mu W^a_{\nu} - \partial_\nu W^a_{\mu} + gf^a_{bc} W^b_{\mu} W^c_{\nu}
\]

\[
D^i_j = \delta^i_j \partial_\mu - ig W^a_{\mu} t^i_j
\]

• Higgs field is not gauge-invariant

• Irrespective of phase

[Caudy & Greensite PRD 2008
Maas, EPJC 2011
Philipsen et al. NPB 1996]
Elementary states

\[L = - \frac{1}{4} W^a_{\mu \nu} W^\mu_\nu + (D^i_\mu h^j) + D^\mu_{ik} h_k + \lambda (h^a h^+_a - v^2)^2 \]

\[W^a_{\mu \nu} = \partial_\mu W^a_\nu - \partial_\nu W^a_\mu + gf_{bc} W^b_\mu W^c_\nu \]

\[D^i_\mu = \delta^{ij} \partial_\mu - ig W^a_\mu t^i_a \]

- Higgs field is not gauge-invariant
 - Irrespective of phase
 - Neither is the Higgs expectation value
Elementary states

\[L = -\frac{1}{4} W^a_{\mu \nu} W^{\mu \nu}_a + (D^j_\mu h^j) + D^\mu_{ik} h_k + \lambda (h^a h^+_a - v^2)^2 \]

\[W^a_{\mu \nu} = \partial^a_{\mu} W^a_{\nu} - \partial^a_{\nu} W^a_{\mu} + g f^a_{bc} W^b_{\mu} W^c_{\nu} \]

\[D^i_\mu = \delta^i_\mu \partial^i_\mu - ig W^a_{\mu} t^i_a \]

- Higgs field is not gauge-invariant
 - Irrespective of phase
 - Neither is the Higgs expectation value
 - Same applies to the W bosons
Elementary states

\[L = -\frac{1}{4} W^a_{\mu\nu} W^a_{\mu\nu} + (D^i_j h^j)^+ D^\mu_{ik} h_k + \lambda (h^a h^+_a - v^2)^2 \]

\[W^a_{\mu\nu} = \partial_{\mu} W^a_{\nu} - \partial_{\nu} W^a_{\mu} + gf^a_{bc} W^b_{\mu} W^c_{\nu} \]

\[D^i_j = \delta^i_j \partial^i_{\mu} - ig W^a_{\mu} t^i_j \]

- Higgs field is not gauge-invariant
 - Irrespective of phase
 - Neither is the Higgs expectation value
 - Same applies to the W bosons
 - Higgs pole mass is not renormalization-group invariant
Composite states

• Only bound states and cross sections
gauge-invariant

[Fröhlich et al. PLB 80,
't Hooft ASIB 80,
Bank et al. NPB 79]
Composite states

- Only bound states and cross sections gauge-invariant
 - Higgs-Higgs
Composite states

• Only bound states and cross sections gauge-invariant

• Higgs-Higgs, W-W
Composite states

- Only bound states and cross sections gauge-invariant
- Higgs-Higgs, W-W, Higgs-Higgs-W etc.

[Fröhlich et al. PLB 80, 't Hooft ASIB 80, Bank et al. NPB 79]
Composite states

• Only bound states and cross sections gauge-invariant
 • Higgs-Higgs, W-W, Higgs-Higgs-W etc.

• Applies also to full standard model
 • Also fermions, except for right-handed neutrinos
Classical analysis

\[L = -\frac{1}{4} W_{\mu \nu}^a W_{a \mu \nu} + (D_{\mu}^{ij} h^j)^+ + D_{ik}^{\mu} h_k + \lambda (h^a h_a^+ - \nu^2)^2 \]
Classical analysis

\[L = \lambda \left(h^a h^+_a - \nu^2 \right)^2 \]

- Classical analysis of the Higgs sector

[Bohm et al. 2001]
Classical analysis

\[L = \lambda \left(h^a h_a^+ - v^2 \right)^2 \]

- Classical analysis of the Higgs sector

[Bohm et al. 2001]
Classical analysis

\[L = \lambda \left(h^a h^+_a - v^2 \right)^2 \]

- Classical analysis of the Higgs sector

- Shape depends on parameters

- Experiments decides
 - Higgs mass is tachyonic

[Bohm et al. 2001]
Classical analysis

\[L = \lambda \left(h^a h_a^+ - v^2 \right)^2 \]

Shape depends on parameters

Experiments decides
- Higgs mass is tachyonic

Classical minima

- Classical analysis of the Higgs sector
Classical analysis

\[L = \lambda \left(h^a h_a^+ - v^2 \right)^2 \]

Higgs potential

- Shape depends on parameters
- Experiments decides
 - Higgs mass is tachyonic
- Classical minimum
- Global gauge choice

- Classical analysis of the Higgs sector
Classical analysis

\[L = \lambda (h^a h_a^+ - v^2)^2 \]

- Classical analysis of the Higgs sector
- Non-zero condensate shifts Higgs mass to an ordinary mass.
- Shape depends on parameters
- Experiments decides
 - Higgs mass is tachyonic
- Classical minimum
- Global gauge choice

[Bohm et al. 2001]
Classical analysis

\[L = \lambda \left(h^a h^+_a - v^2 \right)^2 \]

- Classical analysis of the Higgs sector
- Non-zero condensate shifts Higgs mass to an ordinary mass
- Perform perturbative expansion around the classical vacuum

Shape depends on parameters

Experiments decides
- Higgs mass is tachyonic

Classical minimum

Global gauge choice

[Bohm et al. 2001]
Standard approach

• Minimize action classically
 • Yields \(hh^+ = v^2 \) - Higgs vev
Standard approach

• Minimize action classically

• Yields $hh^+ = v^2$ - Higgs vev

• Assume quantum corrections to this are small
Standard approach

- Minimize action classically
 - Yields $hh^+ = v^2$ - Higgs vev
 - Assume quantum corrections to this are small
- Perform global gauge transformation such that

$$h(x) = \begin{bmatrix} \phi^1(x) + i \phi^2(x) \\ v + \eta(x) + i \phi^3(x) \end{bmatrix} \Rightarrow \langle h \rangle = \begin{bmatrix} 0 \\ v \end{bmatrix}$$

[Bohm et al. 2001]
Standard approach

- Minimize action classically
 - Yields $hh^+ = v^2$ - Higgs vev
 - Assume quantum corrections to this are small
- Perform global gauge transformation such that

$$h(x) = \begin{vmatrix} \Phi^1(x) + i \Phi^2(x) \\ v + \eta(x) + i \Phi^3(x) \end{vmatrix} \Rightarrow \langle h \rangle = \begin{bmatrix} 0 \\ v \end{bmatrix}$$

- η mass depends at tree-level on v
Standard approach

- Minimize action classically
 - Yields $hh^+ = v^2$ - Higgs vev
 - Assume quantum corrections to this are small
- Perform global gauge transformation such that

 \[h(x) = \begin{pmatrix} \phi^1(x) + i\phi^2(x) \\ v + \eta(x) + i\phi^3(x) \end{pmatrix} \Rightarrow \langle h \rangle = \begin{pmatrix} 0 \\ v \end{pmatrix} \]

- η mass depends at tree-level on v
- Perform perturbation theory
Implications of global transformation

- Not all charge directions equal
Implications of global transformation

- Not all charge directions equal
 - This is not physical, but merely a choice of gauge
Implications of global transformation

• Not all charge directions equal
 • This is not physical, but merely a choice of gauge
 • “Spontaneous gauge symmetry breaking”
Implications of global transformation

• Not all charge directions equal
 • This is not physical, but merely a choice of gauge
 • “Spontaneous gauge symmetry breaking”
 • Broken by the transformation, not by the dynamics
 • Dynamics only affect the length of the Higgs field
 • Local symmetry intact and cannot be broken

[Elitzur PR'75]
Implications of global transformation

- Not all charge directions equal
 - This is not physical, but merely a choice of gauge
 - "Spontaneous gauge symmetry breaking"
 - Broken by the transformation, not by the dynamics
 - Dynamics only affect the length of the Higgs field
 - Local symmetry intact and cannot be broken
 [Elitzur PR'75]

- Consequence: Symmetry in charge space not manifest (hidden)
 - Complicated charge tensor structures
Implications of global transformation

- Not all charge directions equal
 - This is not physical, but merely a choice of gauge
 - "Spontaneous gauge symmetry breaking"
 - Broken by the transformation, not by the dynamics
 - Dynamics only affect the length of the Higgs field
 - Local symmetry intact and cannot be broken
 \[\text{[Elitzur PR'75]}\]
- Consequence: Symmetry in charge space not manifest (hidden)
 - Complicated charge tensor structures
 - Symmetry expressed in STIs/WTIs
Masses of the particles

- Higgs mass is well-defined
 - Very sensitive to parameters
 - Hierarchy problem
Masses of the particles

• Higgs mass is well-defined
 • Very sensitive to parameters
 • Hierarchy problem

• Make the local gauge choice $\partial^\mu W^a_\mu = v \Phi^a$
 • Only possible for SU(2)

[Bohm et al. 2001]
Masses of the particles

- Higgs mass is well-defined
 - Very sensitive to parameters
 - Hierarchy problem
- Make the local gauge choice \(\partial^\mu W_\mu^a = v \varphi^a \)
 - Only possible for SU(2)
- \(W \) boson gets a tree-level mass of order \(v \)
 - Also pseudo-Goldstone bosons \(\varphi \)
Masses of the particles

- Higgs mass is well-defined
 - Very sensitive to parameters
 - Hierarchy problem

- Make the local gauge choice \(\partial^\mu W_\mu^a = v \varphi^a \)
 - Only possible for SU(2)
 - W boson gets a tree-level mass of order \(v \)
 - Also pseudo-Goldstone bosons \(\varphi \)

- Fermions acquire masses due to Yukawa coupling to the Higgs
 - Neglected here
Challenges and problems

• Approach works very well in perturbation theory
 • Experimental data well described
 • Quantum corrections to classical physics small
• Only self-consistent for a light Higgs (<0.5-1 TeV)
Challenges and problems

- Approach works very well in perturbation theory
 - Experimental data well described
 - Quantum corrections to classical physics small
 - Only self-consistent for a light Higgs (<0.5-1 TeV)
- Higgs potential parameters decide condensation
 - Like all standard model parameters determined beyond the standard model
Challenges and problems

• Approach works very well in perturbation theory
 • Experimental data well described
 • Quantum corrections to classical physics small
 • Only self-consistent for a light Higgs (<0.5-1 TeV)
• Higgs potential parameters decide condensation
 • Like all standard model parameters determined beyond the standard model
• Classical solution required to have condensation
 • Global gauge choice for non-zero condensate
Challenges and problems

• Approach works very well in perturbation theory
 • Experimental data well described
 • Quantum corrections to classical physics small
 • Only self-consistent for a light Higgs (<0.5-1 TeV)
• Higgs potential parameters decide condensation
 • Like all standard model parameters determined beyond the standard model
• Classical solution required to have condensation
 • Global gauge choice for non-zero condensate
• Non-perturbative origin?

[Bohm et al. 2001]
Beyond perturbation theory
Non-aligned gauges

• Explicit charge direction inconvenient beyond perturbation theory
Non-aligned gauges

- Explicit charge direction inconvenient beyond perturbation theory
- Define a gauge without preferred direction
Non-aligned gauges

- Explicit charge direction inconvenient beyond perturbation theory
- Define a gauge without preferred direction
 - Local part fixed to Landau gauge by $\partial^\mu W^a_\mu = 0$
 - Gribov-Singer ambiguity fixed by minimal prescription
Non-aligned gauges

- Explicit charge direction inconvenient beyond perturbation theory
- Define a gauge without preferred direction
 - Local part fixed to Landau gauge by $\partial^\mu W^a_\mu = 0$
 - Gribov-Singer ambiguity fixed by minimal prescription
 - Global part fixed by $\langle h \rangle = 0$
Non-aligned gauges

- Explicit charge direction inconvenient beyond perturbation theory

- Define a gauge without preferred direction
 - Local part fixed to Landau gauge by $\partial^\mu W^a_{\mu} = 0$
 - Gribov-Singer ambiguity fixed by minimal prescription
 - Global part fixed by $\langle h \rangle = 0$
 - Aligned Landau gauges also possible
Higgs vev

\[\langle \theta \rangle \text{ [a.u.]} \]

- 'Higgs phase'
- 'Confinement phase'

\[0 \quad 0.05 \quad 0.1 \quad 0.15 \quad 0.2 \quad 0.25 \quad 0.3 \]

\[\frac{1}{L} \text{ [a.u.]} \]
Differentiating phases

• How to distinguish phases?

[Maas, EPJC'11, '12]
Differentiating phases

- How to distinguish phases?
- Relative orientation $\langle \int hdx \int hdy \rangle$
 - $\int hdx$ is the magnetization
Differentiating phases

- How to distinguish phases?
- Relative orientation $\langle \int h dx \int h dy \rangle$
 - $\int h dx$ is the magnetization
- No gauge-invariant difference anyway

[Maas, EPJC'11, '12, Caudy & Greensite PRD'07]
Differentiating phases

- How to distinguish phases?
- Relative orientation $\langle \int h dx \int h dy \rangle$
 - $\int h dx$ is the magnetization
- No gauge-invariant difference anyway
Differentiating phases

- How to distinguish phases?
- Relative orientation \(\langle \int hdx \int hdy \rangle \)
 - \(\int hdx \) is the magnetization
- No gauge-invariant difference anyway

Phase diagram (sketch)

\[
\langle (\theta)^2 \rangle \quad [\text{a.u.}]
\]

\[
\int hdx \quad \int hdy
\]

\[
\int \quad \text{g(Classical gauge coupling)}
\]

\[
f(\text{Classical Higgs mass})
\]

\[
g(\text{Classical gauge coupling})
\]

[Maas, EPJC'11, '12, Caudy & Greensite PRD'07]
Differentiating phases

- How to distinguish phases?
- Relative orientation $\langle \int hdx \int hdy \rangle$
 - $\int hdx$ is the magnetization
- No gauge-invariant difference anyway
Differentiating phases

- How to distinguish phases?
- Relative orientation $\langle \int hdx \int hdy \rangle$
 - $\int hdx$ is the magnetization
- No gauge-invariant difference anyway

[Maas, EPJC'11, '12, Caudy & Greensite PRD'07]
Differentiating phases

- How to distinguish phases?
- Relative orientation \(\langle \int hdx \int hdy \rangle \)
 - \(\int hdx \) is the magnetization
- No gauge-invariant difference anyway

Phase diagram (sketch)

- Higgs phase
- Confinement phase

\[\langle (\theta)^2 \rangle \text{[a.u.]} \]

\[\int hdx \]

\[\int hdy \]

\[1/L \text{[a.u.]} \]
Differentiating phases

- How to distinguish phases?
- Relative orientation $\langle \int hdx \int hdy \rangle$
 - $\int hdx$ is the magnetization
- No gauge-invariant difference anyway

Phase diagram (sketch)

- Higgs phase
- Confinement phase

[Maas, EPJC’11, ’12, Caudy & Greensite PRD’07]
Differentiating phases

- How to distinguish phases?
- Relative orientation $\langle \int hdx \int hdy \rangle$
 - $\int hdx$ is the magnetization
- No gauge-invariant difference anyway

Phase diagram (sketch)

Higgs phase

Confinement phase

1st order or crossover

Coulomb gauge

Landau gauge

g (Classical gauge coupling)

$\frac{1}{L}$ [a.u.]
Non-aligned gauges

• Explicit charge direction inconvenient beyond perturbation theory

• Define a gauge without preferred direction
 • Local part fixed to Landau gauge by $\partial_\mu W_\mu^a = 0$
 • Gribov-Singer ambiguity fixed by minimal prescription
 • Global part fixed by $\langle h \rangle = 0$
 • Aligned Landau gauges also possible

\[\partial_\mu W_\mu^a = 0\]
Non-aligned gauges

- Explicit charge direction inconvenient beyond perturbation theory
- Define a gauge without preferred direction
 - Local part fixed to Landau gauge by $\partial^\mu W^a_\mu = 0$
 - Gribov-Singer ambiguity fixed by minimal prescription
 - Global part fixed by $\langle h \rangle = 0$
 - Aligned Landau gauges also possible
- No classical input – full non-perturbative calculation
Non-aligned gauges

- Explicit charge direction inconvenient beyond perturbation theory
- Define a gauge without preferred direction
 - Local part fixed to Landau gauge by $\partial^\mu W^a_\mu = 0$
 - Gribov-Singer ambiguity fixed by minimal prescription
 - Global part fixed by $\langle h \rangle = 0$
 - Aligned Landau gauges also possible
- No classical input – full non-perturbative calculation
 - Higgs mass dynamically non-tachyonic in a full calculation?
 - How is the Higgs mass determined?

[Maas, EPJC'11, '12]
Gauge-dependent correlators

• Gauge-dependent correlators are different
Gauge-dependent correlators

• Gauge-dependent correlators are different
 • Can have multiplicative and additive renormalizations
 • Simpler to perform in momentum space
Gauge-dependent correlators

- Gauge-dependent correlators are different
 - Can have multiplicative and additive renormalizations
 - Simpler to perform in momentum space
 - Pole masses not necessarily physical
 - Scheme- or scale-dependency
 - Nielsen identities only guarantee gauge-parameter-independency but not gauge-invariance

[Nielsen NPB'75]
Gauge-dependent correlators

• Gauge-dependent correlators are different
 • Can have multiplicative and additive renormalizations
 • Simpler to perform in momentum space
 • Pole masses not necessarily physical
 • Scheme- or scale-dependency
 • Nielsen identities only guarantee gauge-parameter-independency but not gauge-invariance
 [Nielsen NPB'75]
 • Not necessarily positive semi-definite
 • Gauge-dependent states are not part of the physical Hilbert space
Masses from Euclidean propagators

- No exact results on time-like momenta
- Masses can be inferred from Fourier transform
- Long-time behavior relevant
Masses from Euclidean propagators

- No exact results on time-like momenta
- Masses can be inferred from Fourier transform
- Long-time behavior relevant
Masses from Euclidean propagators

- No exact results on time-like momenta
- Masses can be inferred from Fourier transform
- Long-time behavior relevant
Masses from Euclidean propagators

- No exact results on time-like momenta
- Masses can be inferred from Fourier transform
- Long-time behavior relevant
Masses from Euclidean propagators

- No exact results on time-like momenta
- Masses can be inferred from Fourier transform
- Long-time behavior relevant

[Maas PR'13]
Masses from Euclidean propagators

- No exact results on time-like momenta
- Masses can be inferred from Fourier transform
- Long-time behavior relevant
Masses from Euclidean propagators

- No exact results on time-like momenta
- Masses can be inferred from Fourier transform
- Long-time behavior relevant
Gluons

- Positivity violations observed for gluons in Yang-Mills theory
- Precise structure not yet known
- Similar results in 4d [Bowman et al. PRD'07]
- Expensive calculations
Setup

\[L = - \frac{1}{4} W_{\mu \nu}^a W_{\alpha}^{\mu \nu} + (D_{\mu}^i h_j^j)^+ D_{ik}^\mu h_k + \lambda (h_a^a h_a^+ - \nu^2)^2 \]

- Tree-level setup Higgs+W
Setup

\[L = -W^a_{\mu \nu} W^{\mu \nu}_a/4 + (D^j_\mu h^j)^+ D^\mu_{ik} h_k + \lambda (h^a h^+_a - v^2)^2 \]

- Tree-level setup Higgs+W
 - Aligned gauge
 - W mass: 80.375 GeV (sets the scale)
 - Higgs mass: 157.6 GeV, Higgs vev: 246 GeV
Setup

\[L = -W^a_{\mu \nu} W^a_{\mu \nu} / 4 + (D^{ij}_\mu h^j)^+ D^i_{ik} h^i_k + \lambda (h^a h^{a\dagger} - v^2)^2 \]

- Tree-level setup Higgs+W
 - Aligned gauge
 - W mass: 80.375 GeV (sets the scale)
 - Higgs mass: 157.6 GeV, Higgs vev: 246 GeV
 - Non-aligned gauge
 - W mass, Higgs vev both zero
 - Higgs mass: 78.8i GeV
Setup

\[L = -W^a_{\mu \nu} W^a_{\mu \nu} / 4 + (D^i_\mu h^j) + D^\mu_{ik} h_k + \lambda (h^a h^{a^+} - v^2)^2 \]

- Tree-level setup Higgs+W
 - Aligned gauge
 - W mass: 80.375 GeV (sets the scale)
 - Higgs mass: 157.6 GeV, Higgs vev: 246 GeV
 - Non-aligned gauge
 - W mass, Higgs vev both zero
 - Higgs mass: 78.8i GeV
- Translate both to tree-level parameters
 - v=246 GeV
 - \(\lambda=0.0513\) (4!\(\lambda=1.23\))
 - g=0.641 (\(\alpha=0.0327\))
Setup

\[L = -W_{\mu \nu}^a V_{\nu}^\mu W_{a}^{\mu \nu} / 4 + (D^{ij}_\mu h^j)^+ D^\mu_{ik} h_k + \lambda (h^a h^+_a - v^2)^2 \]

- **Tree-level setup Higgs+W**
 - Aligned gauge
 - W mass: 80.375 GeV (sets the scale)
 - Higgs mass: 157.6 GeV, Higgs vev: 246 GeV
 - Non-aligned gauge
 - W mass, Higgs vev both zero
 - Higgs mass: 78.8 GeV
- **Translate both to tree-level parameters**
 - \(v = 246 \) GeV
 - \(\lambda = 0.0513 \) (4!\(\lambda = 1.23\))
 - \(g = 0.641 \) (\(\alpha = 0.0327\))
- **Quite perturbative**
Setup

\[L = -W^a_{\mu \nu} W^a_{\mu \nu} / 4 + (D^i_{\mu} h^j)^+ D^\mu_{ik} h_k + \lambda (h^a h_a^+ - v^2)^2 \]

- Tree-level setup Higgs+W
 - Aligned gauge
 - W mass: 80.375 GeV (sets the scale)
 - Higgs mass: 157.6 GeV, Higgs vev: 246 GeV
 - Non-aligned gauge
 - W mass, Higgs vev both zero
 - Higgs mass: 78.8 GeV
- Translate both to tree-level parameters
 - v=246 GeV
 - \(\lambda = 0.0513 \) (4!\(\lambda = 1.23 \))
 - g=0.641 (\(\alpha = 0.0327 \))
- Quite perturbative
- Non-perturbative: Simulate Higgs+W [Maas EPJC'11, PR'13]
Renormalization scheme with

\[D(\mu) = \frac{1}{\left(\mu^2 + (80.375 \, \text{GeV})^2\right)} \quad \wedge \mu = 80.375 \, \text{GeV} \]
W boson

- Renormalization scheme with
 \[D(\mu) = \frac{1}{\mu^2 + (80.375 \text{ GeV})^2} \land \mu = 80.375 \text{ GeV} \]

- Massive-like propagator

- Dynamical mass generation
W boson

Fit type	Mass	Remark
Screening mass | 79.1(2) GeV | RG dependent
W boson

Schwinger function

![Schwinger function graph](image)

<table>
<thead>
<tr>
<th>Fit type</th>
<th>Mass</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening mass</td>
<td>79.1(2) GeV</td>
<td>RG dependent</td>
</tr>
<tr>
<td>Simple pole</td>
<td>71.2(2) GeV</td>
<td>Fit in momentum space</td>
</tr>
</tbody>
</table>

[Maas, EPJC 2011, Maas unpublished, 24^4, $\beta=2.3$, $\kappa=0.32$, $\lambda=1$]

Slides left: 1/16
W boson

<table>
<thead>
<tr>
<th>Fit type</th>
<th>Mass</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening mass</td>
<td>79.1(2) GeV</td>
<td>RG dependent</td>
</tr>
<tr>
<td>Simple pole</td>
<td>71.2(2) GeV</td>
<td>Fit in momentum space</td>
</tr>
<tr>
<td>With cut</td>
<td>71.2(2) GeV</td>
<td></td>
</tr>
</tbody>
</table>

Schwinger function

- **Lattice data**
- **Tree-level particle fit**
- **Stable particle fit**

W propagator

- **D(p) [GeV^-2]**
 - **10^3**
 - **10^4**
 - **10^5**

<table>
<thead>
<tr>
<th>t [GeV^-1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
</tr>
<tr>
<td>0.01</td>
</tr>
<tr>
<td>0.015</td>
</tr>
</tbody>
</table>

- **24^a, β=2.3, κ=0.32 λ=1**
W boson

<table>
<thead>
<tr>
<th>Fit type</th>
<th>Mass</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening mass</td>
<td>79.1(2) GeV</td>
<td>RG dependent</td>
</tr>
<tr>
<td>Simple pole</td>
<td>71.2(2) GeV</td>
<td>Fit in momentum space</td>
</tr>
<tr>
<td>With cut</td>
<td>71.2(2) GeV</td>
<td></td>
</tr>
<tr>
<td>Unstable</td>
<td>71.8(1) GeV</td>
<td>Width: 2.1(4) GeV</td>
</tr>
</tbody>
</table>
W boson

Schwinger function

Fit type	Mass	Remark
Screening mass | $79.1(2)$ GeV | RG dependent
Simple pole | $71.2(2)$ GeV | Fit in momentum space
With cut | $71.2(2)$ GeV |
Unstable | $71.8(1)$ GeV | Width: $2.1(4)$ GeV
Configuration space | $79(4)$ GeV |
W boson

<table>
<thead>
<tr>
<th>Fit type</th>
<th>Mass</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening mass</td>
<td>79.1(2) GeV</td>
<td>RG dependent</td>
</tr>
<tr>
<td>Simple pole</td>
<td>71.2(2) GeV</td>
<td>Fit in momentum space</td>
</tr>
<tr>
<td>With cut</td>
<td>71.2(2) GeV</td>
<td></td>
</tr>
<tr>
<td>Unstable</td>
<td>71.8(1) GeV</td>
<td>Width: 2.1(4) GeV</td>
</tr>
<tr>
<td>Configuration space</td>
<td>79(4) GeV</td>
<td></td>
</tr>
</tbody>
</table>
Higgs boson

- Renormalization scheme with

\[D(\mu) = D^{tl}(\mu) \]
\[D(\mu)' = D^{tl}(\mu)' \]
\[D^{tl}(p) = \frac{1}{(p^2 + (157.6 \text{ GeV})^2)} \]
\[\mu = 157.6 \text{ GeV} \]
Higgs boson

- Normal propagator – normal mass
Higgs boson

Schwinger function

Higgs propagator

Fit type	Pole mass	Remark
Screening mass | 158.4(1) GeV | RG dependent
Higgs boson

Screening mass

Simple pole

Fit type

Pole mass

Remark

158.4(1) GeV

RG dependent

158.9(5) GeV

RG dependent

Maas, EPJC 2011
Maas unpublished
24ε, β=2.3, κ=0.32 λ=1
Higgs boson

Schwinger function

- Lattice data
- Tree-level particle fit
- Stable particle fit

Higgs propagator

- $D_H(p)$ vs. p for various fits.

<table>
<thead>
<tr>
<th>Fit type</th>
<th>Pole mass</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening mass</td>
<td>158.4(1) GeV</td>
<td>RG dependent</td>
</tr>
<tr>
<td>Simple pole</td>
<td>158.9(5) GeV</td>
<td>RG dependent</td>
</tr>
<tr>
<td>With cut</td>
<td>158.9(5) GeV</td>
<td></td>
</tr>
</tbody>
</table>
Higgs boson

Fit type	Pole mass	Remark
Screening mass | 158.4(1) GeV | RG dependent
Simple pole | 158.9(5) GeV | RG dependent
With cut | 158.9(5) GeV |
Unstable | 158.5(9) GeV | Width 0.9(8) GeV
Different renormalization scheme with mass 90 GeV

<table>
<thead>
<tr>
<th>Fit type</th>
<th>Pole mass</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening mass</td>
<td>95.0(1) GeV</td>
<td>RG dependent</td>
</tr>
<tr>
<td>Simple pole</td>
<td>87.8(3) GeV</td>
<td>RG dependent</td>
</tr>
<tr>
<td>With cut</td>
<td>80.1(2) GeV</td>
<td></td>
</tr>
<tr>
<td>Unstable</td>
<td>88.1(5) GeV</td>
<td>Width 1.6+2.0−0.7 GeV</td>
</tr>
</tbody>
</table>
Bound states
Bound states & Consequences
Bound states

• Described by composite operators
 • E.g. Higgsonium $h^+ (x) h(x) = O(x)$
Bound states

• Described by composite operators

 • E.g. Higgsonium \(h^+ (x) h(x) = O(x) \)

 • Bound state propagation described by propagators of composite operators, e.g.
 \[\langle O^+ (x) O(y) \rangle \]

• Masses of ground and excited states obtained from exponential decays
Bound states

• Described by composite operators
 • E.g. Higgsonium $h^+ (x) h(x) = O(x)$
 • Bound state propagation described by propagators of composite operators, e.g.
 $\langle O^+ (x) O(y) \rangle$

• Masses of ground and excited states obtained from exponential decays

• Physical states with positive semi-definite propagators
 • Excited states appear as change of slope
 • Decays and widths complicated to extract
Higgsonium

- Simplest 0^{++} bound state $h^+ (x) h(x)$
Higgsonium

- Simpelst 0^{++} bound state $h^+ (x) h(x)$
- Same quantum numbers as the Higgs
- No weak or flavor charge
Higgsonium

- Simpelst 0^{++} bound state $h^+ (x) h(x)$
- Same quantum numbers as the Higgs
 - No weak or flavor charge
- Mass is about 154 GeV

Lattice data

Fit with lowest mass $154.3^{+1.1}_{-4.9}$ GeV

[Maas unpublished, PoS'11, 24^4, $\beta=2.3$, $\kappa=0.32$ $\lambda=1$]
Mass relation - Higgs

- Higgsonium: 154 GeV,
- Higgs at tree-level: 159 GeV
Mass relation - Higgs

- Higgsonium: 154 GeV,
- Higgs at tree-level: 159 GeV
- Scheme exists to shift Higgs mass always to 158 GeV
Mass relation - Higgs

- Higgsonium: 154 GeV,
- Higgs at tree-level: 159 GeV
 - Scheme exists to shift Higgs mass always to 158 GeV
- Coincidence?
Mass relation - Higgs

• Higgsonium: 154 GeV,
• Higgs at tree-level: 159 GeV
 • Scheme exists to shift Higgs mass always to 158 GeV
• Coincidence? No.
Mass relation - Higgs

- Higgsonium: 154 GeV,
- Higgs at tree-level: 159 GeV
 - Scheme exists to shift Higgs mass always to 158 GeV
- Coincidence? No.
 - Duality between elementary states and bound states [Fröhlich et al. PLB 80]
Mass relation - Higgs

- Higgsonium: 154 GeV,
- Higgs at tree-level: 159 GeV
 - Scheme exists to shift Higgs mass always to 158 GeV
- Coincidence? No.
 - Duality between elementary states and bound states
 \[\langle (h^+ h)(x)(h^+ h)(y) \rangle \]

[Fröhlich et al. PLB 80 Maas'12]
Mass relation - Higgs

- Higgsonium: 154 GeV,
- Higgs at tree-level: 159 GeV
 - Scheme exists to shift Higgs mass always to 158 GeV
- Coincidence? No.
 - Duality between elementary states and bound states

\[h = v + \eta \approx \langle (h^+ h)(x)(h^+ h)(y) \rangle \]
Mass relation - Higgs

- Higgsonium: 154 GeV,
- Higgs at tree-level: 159 GeV
 - Scheme exists to shift Higgs mass always to 158 GeV
- Coincidence? No.
 - Duality between elementary states and bound states

\[
\langle (h^+ h)(x)(h^+ h)(y) \rangle \approx h = v + \eta \\
\langle (h^+ h)(x)(h^+ h)(y) \rangle \approx \text{const.} + \langle h^+ (x)h(y) \rangle + O(\eta^3)
\]
Mass relation - Higgs

- Higgsonium: 154 GeV,
- Higgs at tree-level: 159 GeV
 - Scheme exists to shift Higgs mass always to 158 GeV
- Coincidence? No.
 - Duality between elementary states and bound states [Fröhlich et al. PLB 80]

\[h = v + \eta \]
\[\langle (h^+ h)(x)(h^+ h)(y) \rangle \approx \text{const.} + \langle h^+ (x) h(y) \rangle + O(\eta^3) \]
- Same poles to leading order
Isovector-vector state

- Vector state with operator $tr t^a \frac{h^+}{\sqrt{h^+ h}} D^\mu \frac{h}{\sqrt{h^+ h}}$
Isovector-vector state

- Vector state with operator $tr t^a \frac{h^+}{\sqrt{h^+ h}} D_\mu \frac{h}{\sqrt{h^+ h}}$
- Only in a Higgs phase close to a simple particle
- Higgs-flavor triplet
Isovector-vector state

- Vector state with operator $\text{tr} \ t^a \ \frac{h^+}{\sqrt{h^+ h}} \ D^\mu \ \frac{h}{\sqrt{h^+ h}}$
- Only in a Higgs phase close to a simple particle
- Higgs-flavor triplet
- Mass about 80 GeV
Mass relation - W

• Vector state: 80 GeV
Mass relation - W

- Vector state: 80 GeV
- W at tree-level: 80 GeV
 - W not scale or scheme dependent
Mass relation - W

- Vector state: 80 GeV
- W at tree-level: 80 GeV
 - W not scale or scheme dependent
- Same mechanism
 \[\langle (h^+ D_\mu h)(x)(h^+ D_\mu h)(y) \rangle \]
Mass relation - W

- Vector state: 80 GeV
- W at tree-level: 80 GeV
 - W not scale or scheme dependent
- Same mechanism

\[\langle (h^+ D_\mu h)(x) (h^+ D_\mu h)(y) \rangle \]

\[h = v + \eta \approx \partial v = 0 \]
Mass relation - W

- Vector state: 80 GeV
- W at tree-level: 80 GeV
 - W not scale or scheme dependent
- Same mechanism

\[
\langle (h^+ D_\mu h)(x)(h^+ D_\mu h)(y) \rangle
\]

\[
h = v + \eta \\
\approx \text{const.} + \langle W_\mu(x)W_\mu(y) \rangle + O(\eta^3)
\]

\[
\partial v = 0
\]
Mass relation - W

- Vector state: 80 GeV
- W at tree-level: 80 GeV
 - W not scale or scheme dependent
- Same mechanism
 \[\langle (h^+ D_\mu h)(x)(h^+ D_\mu h)(y) \rangle \]
 \[h = v + \eta \approx \text{const.} + \langle W_\mu(x)W_\mu(y) \rangle + O(\eta^3) \]
 \[\partial \nu = 0 \]
- Same poles at leading order
 - Remains true beyond leading order
Mass relation - W

- Vector state: 80 GeV
- W at tree-level: 80 GeV
 - W not scale or scheme dependent
- Same mechanism

\[
\langle (h^+ D_\mu h)(x)(h^+ D_\mu h)(y) \rangle \\
\]

\[
h = v + \eta \\
\approx \text{const.} + \langle W_\mu(x) W_\mu(y) \rangle + O(\eta^3) \\
\partial_V = 0
\]

- Same poles at leading order
 - Remains true beyond leading order
 - At least for a light Higgs
Consequences I – W and Higgs

• Bound state and elementary particles are equivalent to leading order
 • At tree-level same resonances in cross section
Consequences I – W and Higgs

- Bound state and elementary particles are equivalent to leading order
 - At tree-level same resonances in cross section
- Beyond tree-level: Resonances in cross sections remain scheme, scale, and gauge invariant
 - At least Higgs mass is not
Consequences I – W and Higgs

- Bound state and elementary particles are equivalent to leading order
 - At tree-level same resonances in cross section
- Beyond tree-level: Resonances in cross sections remain scheme, scale, and gauge invariant
 - At least Higgs mass is not
- Cross section resonances associated with physical particles: Bound states
 - Similar to quarkonium resonances

[Fröhlich et al. PLB 80 Maas'12]
Consequences I – W and Higgs

- Bound state and elementary particles are equivalent to leading order
 - At tree-level same resonances in cross section
- Beyond tree-level: Resonances in cross sections remain scheme, scale, and gauge invariant
 - At least Higgs mass is not
- Cross section resonances associated with physical particles: Bound states
 - Similar to quarkonium resonances
 - No large differences for light Higgs
Consequences I – W and Higgs

- Similar relations hold for fermions
Consequences I – W and Higgs

• Similar relations hold for fermions

• Precise results require bound-state-bound-state scattering

[Fröhlich et al. PLB 80 Maas'12]
Consequences I – W and Higgs

• Similar relations hold for fermions
 • Precise results require bound-state-bound-state scattering
 • Hard to evaluate
Consequences I – W and Higgs

- Similar relations hold for fermions
 - Precise results require bound-state-bound-state scattering
 - Hard to evaluate
 - Likely to agree in expansion in Higgs vev in perturbation theory
Consequences I – W and Higgs

• Similar relations hold for fermions

 • Precise results require bound-state-bound-state scattering

 • Hard to evaluate

 • Likely to agree in expansion in Higgs vev in perturbation theory

 • Sub-leading differences could be hidden in scale and scheme uncertainties

 • Particular schemes may be very effective

[Fröhlich et al. PLB 80 Maas'12]
Consequences I – W and Higgs

• Similar relations hold for fermions
 • Precise results require bound-state-bound-state scattering
 • Hard to evaluate
 • Likely to agree in expansion in Higgs vev in perturbation theory
 • Sub-leading differences could be hidden in scale and scheme uncertainties
 • Particular schemes may be very effective
• Requires a full calculation to decide

[Fröhlich et al. PLB 80 Maas'12]
Consequences II - Hierarchy

• Bound states masses are not renormalized
Consequences II - Hierarchy

- Bound states masses are not renormalized
 - No dependence on the cut-off
Consequences II - Hierarchy

- Bound states masses are not renormalized
 - No dependence on the cut-off
 - Naturally the same mass scale of W and Higgs
 - No obvious mechanism of scale separation available
 - No fine-tuning
Consequences II - Hierarchy

- Bound states masses are not renormalized
 - No dependence on the cut-off
 - Naturally the same mass scale of W and Higgs
 - No obvious mechanism of scale separation available
 - No fine-tuning
 - No hierarchy problem
Consequences II - Hierarchy

- Bound states masses are not renormalized
 - No dependence on the cut-off
 - Naturally the same mass scale of W and Higgs
 - No obvious mechanism of scale separation available
 - No fine-tuning
 - No hierarchy problem?
Consequences II - Hierarchy

• Bound states masses are not renormalized
 • No dependence on the cut-off
 • Naturally the same mass scale of W and Higgs
 • No obvious mechanism of scale separation available
 • No fine-tuning
 • No hierarchy problem?
• Speculative
Consequences II - Hierarchy

- Bound states masses are not renormalized
 - No dependence on the cut-off
 - Naturally the same mass scale of W and Higgs
 - No obvious mechanism of scale separation available
 - No fine-tuning
 - No hierarchy problem?
- Speculative
- Large W/Higgs mass separation possible?
 - Search for corresponding LCPs
Consequences II - Hierarchy

- Bound states masses are not renormalized
 - No dependence on the cut-off
 - Naturally the same mass scale of W and Higgs
 - No obvious mechanism of scale separation available
 - No fine-tuning
 - No hierarchy problem?
- Speculative
- Large W/Higgs mass separation possible?
 - Search for corresponding LCPs
- Triviality problem remains
Consequences III – Excited states [Maas PoS’11, unpublished]

- Bound states can have excited states
Bound states can have excited states

Excited 0^{++} Higgsonium with $275.6(3)$ GeV
Consequences III – Excited states

- Bound states can have excited states
- Excited 0^{++} Higgsonium with 275.6(3) GeV
 - Almost pure $W-W$ (W^2) state: W-ball
Consequences III – Excited states

- Bound states can have excited states
- Excited 0^{++} Higgsonium with $275.6(3)$ GeV
 - Almost pure $W-W$ (W^2) state: W-ball
- Complete spectrum?

[Maas PoS'11, unpublished]
Low-lying spectrum

PRELIMINARY
Low-lying spectrum

- Excited spectrum complicated
- Can exist for other quantum numbers
 - No simple relation to elementary states
 - Pseudoscalars
Low-lying spectrum

- Excited spectrum complicated
- Can exist for other quantum numbers
 - No simple relation to elementary states
 - Pseudoscalars, higher-spin states,...
Consequences II – Excited states

• Can such states be detected?
Consequences II – Excited states

• Can such states be detected?
 • Produced like excited quarkonia
Consequences II – Excited states

- Can such states be detected?
 - Produced like excited quarkonia
 - Depends strongly on decay widths
 - May just be a broad background
 - Mix with top-quark and other bound states
Consequences II – Excited states

- Can such states be detected?
 - Produced like excited quarkonia
 - Depends strongly on decay widths
 - May just be a broad background
 - Mix with top-quark and other bound states
- If produced significantly constitutes standard-model background to new physics search
Consequences II – Excited states

• Can such states be detected?
 • Produced like excited quarkonia
 • Depends strongly on decay widths
 • May just be a broad background
 • Mix with top-quark and other bound states

• If produced significantly constitutes standard-model background to new physics search

• Requires full understanding of bound state dynamics
Experimental consideration

• Excited states and exotic quantum numbers have no leading contribution
Experimental consideration

- Excited states and exotic quantum numbers have no leading contribution
 - Expansion in vacuum condensate has leading order zero
Experimental consideration

- Excited states and exotic quantum numbers have no leading contribution
 - Expansion in vacuum condensate has leading order zero
- Higher order processes
Experimental consideration

- Excited states and exotic quantum numbers have no leading contribution
 - Expansion in vacuum condensate has leading order zero

- Higher order processes
 - Either in gauge coupling or 4-Higgs coupling
Experimental consideration

- Excited states and exotic quantum numbers have no leading contribution
 - Expansion in vacuum condensate has leading order zero

- Higher order processes
 - Either in gauge coupling or 4-Higgs coupling
 - Strongly suppressed
 - $\lambda=0.0513$, $\alpha=0.0327$
Experimental consideration

- Excited states and exotic quantum numbers have no leading contribution
 - Expansion in vacuum condensate has leading order zero
- Higher order processes
 - Either in gauge coupling or 4-Higgs coupling
 - Strongly suppressed
 - $\lambda=0.0513$, $\alpha=0.0327$
- Hard to discover at LHC, even at 100 fb$^{-1}$
Experimental consideration

- Excited states and exotic quantum numbers have no leading contribution
 - Expansion in vacuum condensate has leading order zero
- Higher order processes
 - Either in gauge coupling or 4-Higgs coupling
 - Strongly suppressed
 - \(\lambda = 0.0513, \alpha = 0.0327 \)
- Hard to discover at LHC, even at 100 fb\(^{-1} \)
- On-resonance production at ILC?
Strategy

• Requires cross-section prediction
 • Time-like: Not accessible on lattice
Strategy

• Requires cross-section prediction
 • Time-like: Not accessible on lattice
• Couplings and masses from the lattice
Strategy

• Requires cross-section prediction
 • Time-like: Not accessible on lattice

• Couplings and masses from the lattice
 • QED mandatory for quantitative prediction
 • Z-W splitting of 10 GeV due to QED mixing
Strategy

- Requires cross-section prediction
 - Time-like: Not accessible on lattice
- Couplings and masses from the lattice
 - QED mandatory for quantitative prediction
 - Z-W splitting of 10 GeV due to QED mixing
- Parity violation challenging
 - New lattice methods
 - Other approaches (functional methods?)
Strategy

- Requires cross-section prediction
 - Time-like: Not accessible on lattice
- Couplings and masses from the lattice
 - QED mandatory for quantitative prediction
 - Z-W splitting of 10 GeV due to QED mixing
- Parity violation challenging
 - New lattice methods
 - Other approaches (functional methods?)
- Formulate as effective low-energy theory
 - SM+effective operators
Strategy

- Requires cross-section prediction
 - Time-like: Not accessible on lattice
- Couplings and masses from the lattice
 - QED mandatory for quantitative prediction
 - Z-W splitting of 10 GeV due to QED mixing
 - Parity violation challenging
 - New lattice methods
 - Other approaches (functional methods?)
- Formulate as effective low-energy theory
 - SM+effective operators
- Use perturbation theory/MC event generators
Summary

- Higgs sector with light Higgs successfully described by perturbation theory around classical physics
Summary

- Higgs sector with light Higgs successfully described by perturbation theory around classical physics
- Justified by full non-perturbative calculations
 - Higgs and W masses can be determined non-perturbatively
 - Applicable to a heavy Higgs
Summary

- Higgs sector with light Higgs successfully described by perturbation theory around classical physics
- Justified by full non-perturbative calculations
 - Higgs and W masses can be determined non-perturbatively
 - Applicable to a heavy Higgs
- Bound-state/elementary state duality
 - Permits physical interpretation of resonances in cross sections
Summary

• Higgs sector with light Higgs successfully described by perturbation theory around classical physics

• Justified by full non-perturbative calculations
 • Higgs and W masses can be determined non-perturbatively
 • Applicable to a heavy Higgs

• Bound-state/elementary state duality
 • Permits physical interpretation of resonances in cross sections
 • Predicts new excitations of bound states
 • Background for new physics searches
Summary

• Higgs sector with light Higgs successfully described by perturbation theory around classical physics

• Justified by full non-perturbative calculations
 • Higgs and W masses can be determined non-perturbatively
 • Applicable to a heavy Higgs

• Bound-state/elementary state duality
 • Permits physical interpretation of resonances in cross sections
 • Predicts new excitations of bound states
 • Background for new physics searches
 • Non-perturbatively interesting even for a light Higgs
Outlook

• Next steps
Outlook

• Next steps
 • Systematic investigations
 • LCP, discretization, cut-off, triviality…
Outlook

• Next steps
 • Systematic investigations
 • LCP, discretization, cut-off, triviality...
 • Excited states widths – which are sufficiently stable
 • Lüscher's method
Outlook

• Next steps
 • Systematic investigations
 • LCP, discretization, cut-off, triviality…
 • Excited states widths – which are sufficiently stable
 • Lüscher's method
 • Couplings and effective theories
 • Estimate which states could be a candidate for observation
Outlook

• Next steps
 • Systematic investigations
 • LCP, discretization, cut-off, triviality...
 • Excited states widths – which are sufficiently stable
 • Lüscher's method
 • Couplings and effective theories
 • Estimate which states could be a candidate for observation
• Far future…
Outlook

• Next steps
 • Systematic investigations
 • LCP, discretization, cut-off, triviality...
 • Excited states widths – which are sufficiently stable
 • Lüscher's method
 • Couplings and effective theories
 • Estimate which states could be a candidate for observation
• Far future...get quantitative