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MNPBEM is a Matlab toolbox for the simulation of metallic nanoparticles (MNP), using a boundary
element method (BEM) approach. The main purpose of the toolbox is to solve Maxwell’s equations for a
dielectric environment where bodies with homogeneous and isotropic dielectric functions are separated
by abrupt interfaces. Although the approach is in principle suited for arbitrary body sizes and photon
energies, it is tested (and probably works best) for metallic nanoparticles with sizes ranging from a
few to a few hundreds of nanometers, and for frequencies in the optical and near-infrared regime. The
toolbox has been implemented with Matlab classes. These classes can be easily combined, which has the
advantage that one can adapt the simulation programs flexibly for various applications.

Program summary

Program title: MNPBEM
Catalogue identifier: AEKJ_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEKJ_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: GNU General Public License v2
No. of lines in distributed program, including test data, etc.: 15 700
No. of bytes in distributed program, including test data, etc.: 891 417
Distribution format: tar.gz
Programming language: Matlab 7.11.0 (R2010b)
Computer: Any which supports Matlab 7.11.0 (R2010b)
Operating system: Any which supports Matlab 7.11.0 (R2010b)
RAM: � 1 GByte
Classification: 18
Nature of problem: Solve Maxwell’s equations for dielectric particles with homogeneous dielectric
functions separated by abrupt interfaces.
Solution method: Boundary element method using electromagnetic potentials.
Running time: Depending on surface discretization between seconds and hours.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Plasmonics is an emerging field with numerous applications foreseen, ranging from sensorics over extreme light concentration and
light harvesting to optical and quantum technology, as well as metamaterials and optical cloaking [1–5]. The workhorse of plasmonics are
surface plasmons, these are coherent electron charge oscillations bound to the interface between a metal and a dielectric [2,6]. These surface
plasmons come along with strongly localized, so-called evanescent electromagnetic fields, which can be exploited for bringing light down
to the nanoscale, thereby overcoming the diffraction limit of light and bridging between the micrometer length scale of optics and the
nanometer length scale of nanostructures. On the other hand, tiny variations of the dielectric environment close to the nanostructures, e.g.
induced by binding of molecules to a functionalized metal surface, can significantly modify the evanescent fields and, in turn, the surface
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Fig. 1. A few representative model systems suited for simulation within the MNPBEM toolbox: (a) Metallic nanosphere embedded in a dielectric background, (b) coupled
nanospheres, and (c) coated nanosphere. The dielectric functions are denoted with εi . In panels (a) and (c) we also report the outer surface normals of the particle boundaries.

plasmon resonances. This can be exploited for (bio)sensor applications, eventually bringing the sensitivity down to the single-molecule
level.

Of particular interest are particle plasmons, these are surface plasmons confined in all three spatial dimensions to the surface of a
nanoparticle [2,7]. The properties of these excitations depend strongly on particle geometry and interparticle coupling, and give rise
to a variety of effects, such as frequency-dependent absorption and scattering or near field enhancement. Particle plasmons enable the
concentration of light fields to nanoscale volumes and play a key role in surface enhanced spectroscopy [8–11].

Simulation of particle plasmons is nothing but the solution of Maxwell’s equations for metallic nanoparticles embedded in a dielectric
environment. Consequently, the simulation toolboxes usually employed in the field are not specifically designed for plasmonics applica-
tions. For instance, the discrete dipole approximation toolbox DDSCATT [12,13] was originally designed for the simulation of scattering
from interstellar graphite grains, but has in recent years been widely used within the field of plasmonics. Also the finite difference time
domain (FDTD) approach [14,15] has been developed as a general simulation toolkit for the solution of Maxwell’s equations. Other com-
putational approaches widely used in the field of plasmonics are the dyadic Green function technique [16] or the multiple multipole
method [6].

In this paper we present the simulation toolbox MNPBEM for metallic nanoparticles (MNP), which is based on a boundary element
method (BEM) approach developed by Garcia de Abajo and Howie [17,18]. The approach is less general than the above approaches, in that
it assumes a dielectric environment where bodies with homogeneous and isotropic dielectric functions are separated by abrupt interfaces,
rather than allowing for a general inhomogeneous dielectric environment. On the other hand, for most plasmonics applications with
metallic nanoparticles embedded in a dielectric background the BEM approach appears to be a natural choice. It has the advantage that
only the boundaries between the different dielectric materials have to be discretized, and not the whole volume, which results in faster
simulations with more moderate memory requirements.

The MNPBEM toolbox has been designed such that it provides a flexible toolkit for the simulation of the electromagnetic properties
of plasmonic nanoparticles. The toolbox works in principle for arbitrary dielectric bodies with homogeneous dielectric properties, which
are separated by abrupt interfaces, although we have primarily used and tested it for metallic nanoparticles with diameters ranging from
a few to a few hundred nanometers, and for frequencies in the optical and near-infrared regime. We have developed the programs over
the last few years [19,20], and have used them for the simulation of optical properties of plamonic particles [21,22], surface enhanced
spectroscopy [23–25], sensorics [26,27], and electron energy loss spectroscopy (EELS) [28,29].

In the past year, we have completely rewritten the code using classes within Matlab 7.11. These classes can be easily combined such
that one can adapt the simulation programs flexibly to the user’s needs. A comprehensive help is available for all classes and functions of
the toolbox through the doc command. In addition, we have created detailed help pages, accessible in the Matlab help browser, together
with a complete list of the classes and functions of the toolbox, and a number of demo programs. In this paper we provide an ample
overview of the MNPBEM toolbox, but leave the details to the help pages. As the theory underlying our BEM approach has been presented
in great detail elsewhere [17,18], in the following we only give a short account of the approach and refer the interested reader to the
pertinent literature and the help pages.

Throughout the MNPBEM toolbox, lengths are measured in nanometers and photon energies through the light wavelength λ (in vacuum)
in nanometers. In the programs we use for λ the notation enei (inverse of photon energy). With the only exception of the classes for the
dielectric functions, one could also measure distances and wavelengths in other units such as e.g. micrometers or atomic units. Inside the
toolbox we use Gauss units, in accordance with Refs. [17,18]. This is advantageous for the scalar and vector potentials, which are at the
heart of our BEM approach, and which could not be treated on an equal footing with the SI system. For most applications, however, the
units remain completely hidden within the core routines of the BEM solvers.

2. Theory

In the following we consider dielectric nanoparticles, described through local and isotropic dielectric functions εi(ω), which are sep-
arated by sharp boundaries ∂V i . A few representative examples are shown in Fig. 1. When the particles are excited by some external
perturbation, such as an incoming plane wave or the fields created by a nearby oscillating dipole, they will become polarized and electro-
magnetic fields are induced. The goal of the MNPBEM toolbox is to compute for a given external perturbation these induced electromagnetic
fields. This is achieved by solving Maxwell’s equations and using the boundary conditions at the particle boundaries.

2.1. Quasistatic approximation

We first discuss things for nanoparticles much smaller than the light wavelength, where one can employ the quasistatic approximation.
Here one solves the Poisson or Laplace equation for the electrostatic potential [30], rather than the Helmholtz equation for the scalar
and vector potentials, but keeps the full frequency-dependent dielectric functions in the evaluation of the boundary conditions [6,20].
A convenient solution scheme is provided by the electrostatic Green function
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which is the proper solution of the Poisson equation for a point-like source in an unbounded, homogeneous medium. In case of an
inhomogeneous dielectric environment, with homogeneous dielectric particles V i separated by sharp boundaries ∂V i , inside a given region
r ∈ V i one can write down the solution in the ad-hoc form [17–19]

φ(r) = φext(r) +
∮
V i

G(r, s)σ (s)da. (2)

Here φext is the external electrostatic potential, and σ(s) is a surface charge distribution located at the particle boundary ∂V i . Eq. (2)
is constructed such that it fulfills the Poisson or Laplace equation everywhere except at the particle boundaries. The surface charge
distribution σ(s) has to be chosen such that the appropriate boundary conditions of Maxwell’s equations are fulfilled. Continuity of
the parallel electric field implies that σ has to be the same in- and outside the particle. From the continuity of the normal dielectric
displacement we find the boundary integral equation [18,19,31]

Λσ(s) +
∮

∂G(s, s′)
∂n

σ(s)da′ = −∂φext(s)

∂n
, Λ = 2π

ε2 + ε1

ε2 − ε1
, (3)

whose solutions determine the surface charge distribution σ . Here ∂
∂n denotes the derivative along the direction of the outer surface

normal, and ε1 and ε2 are the dielectric functions in- and outside the particle boundary, respectively. Approximating the integral in
Eq. (3) by a sum over surface elements, one arrives at a boundary element method (BEM) approach with surface charges σi given at the
discretized surface elements. From
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)
i

(4)

one can obtain the surface charges σi through simple matrix inversion. Eq. (4) constitutes the main equation of the quasistatic BEM
approach. The central elements are Λ, which is governed by the dielectric functions in- and outside the particle boundaries, the surface
derivatives ( ∂G

∂n )i j of the Green function connecting surface elements i and j, and the surface derivative (
∂φext
∂n )i of the external potential.

2.2. Full Maxwell equations

A similar scheme can be applied when solving the full Maxwell equations. We now need both the scalar and vector potentials, which
both fulfill a Helmholtz equation [17,30]. Again we define a Green function
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i
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where ki = √
εik is the wavenumber in the medium r ∈ V i , k = ω/c is the wavenumber in vacuum, and c is the speed of light. The

magnetic permeability μ is set to one throughout. In analogy to the quasistatic case, for an inhomogeneous dielectric environment we
write down the solutions in the ad-hoc form [17,18]

φ(r) = φext(r) +
∮
V i

Gi(r, s)σi(s)da, (6)

A(r) = Aext(r) +
∮
V i

Gi(r, s)hi(s)da, (7)

which fulfill the Helmholtz equations everywhere except at the particle boundaries. σi and hi are surface charge and current distributions,
and φext and Aext are the scalar and vector potentials characterizing the external perturbation.

The scalar and vector potentials are additionally related through the Lorentz gauge condition ∇ · A = ikεφ [17], which in principle allows
to express φ through the divergence of A. However, it is advantageous to keep both the scalar and vector potential: in the evaluation of the
boundary conditions we then only need the potentials together with their first, rather than also second, surface derivatives. The potential-
based BEM approach then invokes only Gi together with its surface derivative ∂Gi/∂n, in contrast to the field-based BEM approach
which also invokes the second surface derivatives ∂2Gi/∂n2 [30,32]. As higher derivatives of Gi translate to functions with higher spatial
variations, it is computationally favorable to keep only first-order surface derivatives. Another advantage of Eq. (7) is that the different
components of A are manipulated separately. Thus, when transforming to a BEM approach, by discretizing the boundary integrals, we end
up with matrices of the order N × N , where N is the number of boundary elements. In contrast, for field based BEM approaches the
matrices are of the order 3N × 3N , where the factor of three accounts for the three spatial dimensions.

In the BEM approach the boundary integrals derived from Eqs. (6), (7) are approximated by sums over boundary elements. Exploiting
the boundary conditions of Maxwell’s equations, in analogy to the quasistatic case, we derive a set of rather lengthy equations for the
surface charges and currents [17,18] (see also the help pages of the MNPBEM toolbox), which can be solved through matrix inversions
and multiplications. In contrast to the quasistatic case, the surface charges σ1,2 and currents h1,2 in- and outside the boundary (measured
with respect to the surface normal n) are not identical. Once σ and h are determined, we can compute through Eqs. (6), (7) the potentials
everywhere else, as well as the electromagnetic fields, which are related to the potentials through the usual relations E = ikA − ∇φ and
H = ∇ × A.
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Fig. 2. Screenshot of the help pages of the MNPBEM toolbox within the Matlab help browser. The help pages provide a short introduction, a detailed user guide, a list of the
classes and functions of the toolbox, as well as a number of demo programs.

3. Getting started

3.1. Installation of the toolbox

To install the toolbox, one must simply add the path of the main directory mnpbemdir of the MNPBEM toolbox as well as the paths
of all subdirectories to the Matlab search path. This can be done, for instance, through

addpath(genpath(mnpbemdir));

For particle shapes derived from 2D polygons, to be described in Section 4, one additionally needs the toolbox MESH2D - Automatic
Mesh Generation available at www.mathworks.com. Again, one should add the path of the corresponding directory to the Matlab
path.

To set up the help pages, one must once change to the main directory of the MNPBEM toolbox and run the program makemnpbemhelp

>> cd mnpbemdir;
>> makemnpbemhelp;

Once this is done, the help pages, which provide detailed information about the toolbox, are available in the Matlab help browser. Fig. 2
shows a screenshot of the MNPBEM help pages.

3.2. A simple example

Let us start with the discussion of a simple example. We consider a metallic nanosphere embedded in water, which is excited by
an electromagnetic plane wave, corresponding to light excitation from a source situated far away from the object. For this setup we
compute the light scattered by the nanosphere. The file demospectrumstat.m for the corresponding simulation is available in the
Demo subdirectory and can be opened by typing

>> edit demospectrumstat

The simulation consists of the following steps:

– define the dielectric functions;
– define the particle boundaries;
– specify how the particle is embedded in the dielectric environment;
– set up a solver for the BEM equations;
– specify the excitation scheme (here plane wave excitation);
– solve the BEM equations for the given excitation by computing the auxiliary surface charges (and currents);
– compute the response of the plasmonic nanoparticle (here scattering cross section) to the external excitation.

We next discuss the various steps in more detail. In demospectrumstat.m we first set up a table of dielectric functions, needed for
the problem under study, and a discretized particle boundary which is stored in the form of vertices and faces. A more detailed description
of the different elements of the MNPBEM toolbox will be given in the sections below as well as in the help pages.

http://www.mathworks.com
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Fig. 3. Scattering cross section for a nanosphere with a diameter of 10 nanometers. We compare the results of BEM simulations for a sphere discretization with 144 (left
panel) and 576 (right panel) vertices with those of Mie theory. The dielectric function of gold is taken from Ref. [33] and the refractive index of the embedding medium
nb = 1.33 is representative for water. The results for x and y polarization are indistinguishable.

% table of dielectric functions
epstab = {epsconst(1.33^2),epstable(’gold.dat’)};
% nanosphere with 144 vertices and 10 nanometers diameter
p = trisphere(144,10);

In the above lines we first define two dielectric functions, one for water (refractive index nb = 1.33) and one for gold, and then create a
discretized sphere surface with 144 vertices. For all functions and classes of the toolbox additional information can be obtained by typing

>> doc trisphere

We next have to define the dielectric properties of the nanosphere, depicted in Fig. 1(a), by setting up a comparticle object

p = comparticle(epstab,{p},[2,1],1);

The first two arguments are cell arrays for the dielectric functions and for the particle boundaries. The third argument inout=[2,1]
describes how the particle boundaries and the dielectric functions are related. In the above example we specify that the material at the
in- and outside of the boundary are epstab{2} and epstab{1}, respectively. Note that the in- and outside are defined with respect to
the surface normal n, whose direction is given by the order of the face elements. To check that these surface normals point into the right
direction one can plot the particle with

>> plot(p,’nvec’,true);

Finally, the last argument in the call to comparticle indicates that the particle surface is closed. It is important to provide this additional
information, as will be discussed in Section 5. Once the comparticle object is set up, it is ready for use with the BEM solvers. With

% quasistatic BEM solver
bem = bemstat(p);
% plane wave excitation for given light polarizations
exc = planewavestat([1,0,0;0,1,0]);

we set up a solver for the BEM equations within the quasistatic approximation, and a plane wave excitation for polarizations along x
and y. We next make a loop over the different wavelengths enei. For each wavelength we solve the BEM equations and compute the
scattering cross section [34]

% light wavelength in vacuum in nanometers
enei = linspace(400,700,80);
% scattering spectrum (initialization of array with zeros)
sca = zeros(length(enei),2);

% main loop over different excitation wavelengths
for ien = 1:length(enei)

sig = bem \ exc(p,enei(ien));
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Fig. 4. Flow chart for a typical BEM simulations: we first initialize the BEM solver with a comparticle object, that holds tables of the dielectric functions and of the
discretized particle boundaries. The BEM solver (quasistatic or retarded) communicates with additional excitation-measurement classes, such as planewave for plane wave
illumination or dipole for the excitation from an oscillating dipole. The BEM solver computes the surface charges (currents) sig which can be further processed for
measurement purposes.

sca(ien,:) = exc.sca(sig);
end

The solution of the BEM equations is through sig=bem \ exc(p,enei), where exc(p,enei) returns for the external light illumi-
nation the surface derivative of the potential at the particle boundary. Finally, we can plot the scattering cross section and compare with
the results of Mie theory [34], Fig. 3, using the miestat class provided by the toolbox. Similarly, the extinction cross section can be
computed with exc.ext(sig).

Fig. 4 shows the flow chart for a typical BEM simulation. First, we initialize the BEM solver with a comparticle object, that holds
tables of the dielectric functions and of the discretized particle boundaries. The BEM solver then computes for a given excitation the surface
charges sig, which can then be used for the calculation of measurement results, such as scattering or extinction cross sections. As the
excitation and measurement commands are not hidden inside a function, but appear explicitly inside the wavelength loop, it is possible to
further process the results of the BEM simulation. For instance, we could plot the surface charges through plot(p,real(sig.sig))
or compute the induced electric fields, as will be described further below.

To compute the scattering cross section for the retarded, i.e. full, Maxwell’s equations, we simply have to use a different BEM solver
and excitation-measurement class

% full BEM solver
bem = bemret(p);
% plane wave excitation for given light polarizations
exc = planewaveret([1,0,0;0,1,0],[0,0,1;0,0,1]);

Note that in the call to planewaveret we now have to specify also the light propagation directions.

4. Particle boundaries

The first, and usually most time-consuming job in setting up a MNPBEM simulation is to discretize the particle boundaries. The dis-
cretized boundary is stored as a particle object

p = particle(verts,faces);

Here verts are the vertices and faces the faces of the boundary elements, similarly to the patch objects of Matlab. faces is a
N × 4 array with N being the number of boundary elements. For each element the four entries point to the corners of a quadrilateral. For
triangular boundary elements the last entry should be a NaN.

In principle, in Matlab there exist myriads of surface discretization functions, and the MNPBEM toolbox only provides a few additional
ones

% sphere with given number of vertices and diameter
p = trisphere(nverts,diameter);
% nanorod with given diameter and height
p = trirod(diameter,height);
% torus with given outer and inner radius
p = tritorus(rout,rin);

Fig. 5 shows the corresponding particle surfaces. All functions can receive additional options to control the number of discretization
points, as detailed in the doc command or the help pages. In addition to the vertices and faces, the particle object also stores for each
boundary element the area and centroid, as well as three orthogonal vectors, where nvec is the outer surface normal.

In many cases one has to deal with flat particles, where a 2D polygon is extruded along the third direction. The MNPBEM toolbox
provides a polygon class together with surface discretization and extrusion functions, building upon the Mesh2d toolbox. Let us look to
an example for discretizing the surface of a triangular particle



376 U. Hohenester, A. Trügler / Computer Physics Communications 183 (2012) 370–381
Fig. 5. Discretized particle boundaries, as created with the functions trisphere, trirod, and tritorus of the MNPBEM toolbox. The triangle on the right-hand side is
created from a polygon object, which is extruded with the tripolygon function using the Mesh2d toolbox.

% 2D polygon for triangle with rounded edges
poly = round(polygon(3,’size’,[20,20]));
% height profile for extruding polygon
[edge,z] = edgeprofile(4);
% extrude polygon
p = tripolygon(poly,z,’edge’,edge);

The corresponding particle is displayed in the right panel of Fig. 5. The command edgeprofile returns an array of (x, y) values that
control the rounding-off of the particle. With tripolygon we triangulate the rounded 2D triangle and extrude the particle along the z
direction. In the help pages of the toolbox we explain in more detail how to call tripolygon and related functions in order to utilize
the full potential of the Mesh2d toolbox.

5. Dielectric environment

5.1. Dielectric functions

There exist three classes for dielectric functions.

epsconst A constant dielectric function is initialized with epsconst(val), where val is the dielectric constant.
epsdrude A Drude dielectric function for metals ε(ω) = ε0 − ω2

p/ω(ω + iγ ) is initialized with epsdrude(name), where name is the
name of the metal. We have implemented ’Au’, ’Ag’, and ’Al’ for gold, silver, and aluminum.

epstable A tabulated dielectric function is initialized with epstable(finp), where finp is the name of an input file. This file
must be in ASCII format where each line holds the values ene n k, with ene being the photon energy in eV, and n and
k the real and imaginary part of the refractive index

√
ε, respectively. In the toolbox we provide the files ’gold.dat’ and

’silver.dat’ for the gold and silver dielectric functions tabulated in Ref. [33].

For a dielectric object objeps of one of these classes, one can compute the dielectric function and the wavenumber inside the medium
with

[eps,k] = epsobj(enei);

where enei is as usual the wavelength of light in vacuum.

5.2. The comparticle class

The comparticle class defines how the particle boundaries are embedded in the dielectric environment. As previously discussed, the
outer surface normal n allows to distinguish between the boundary in- and outside. For more complex particles, such as a dumbbell-like
particle, it is not alway possible to chose the particle boundaries such that only particle insides or outsides are connected. In these cases
the meaning of in- and outside is just a matter of convention.

To initialize a dielectric environment, one calls

p = comparticle({eps1,eps2,...},{p1,p2,...},inout,closed);

The first and second argument are cell arrays of the dielectric functions and particle boundaries characterizing the problem. In general,
we recommend to set the first entry of the dielectric functions to that of the embedding medium, as several functions, such as for the
calculation of the scattering or extinction cross sections, assume this on default. The third argument inout=[i1,o1;i2,o2;...]
defines for each particle boundary p. the dielectric functions eps{i.} and eps{o.} at the in- and outside of the boundary. For
instance, for the particles depicted in Fig. 1 we get

% single sphere of Fig. 1(a)
p = comparticle({eps1,eps2},{p},[2,1],1);
% coupled spheres of Fig. 1(b)
p = comparticle({eps1,eps2,eps3},{p1,p2},[2,1;3,1],1,2);
% coated particles of Fig. 1(c)
p = comparticle({eps1,eps2,eps3},{p1,p2},[2,1;3,2],1,2);
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The last argument (or arguments) of the comparticle initialization define closed boundaries. In general, for a closed boundary ∂V i
the following sum rule applies [35]

∮
∂V i

∂G(s, s′)
∂n

da′ = 2π,
∑

j

(
∂G

∂n

)
i j

= 2π, (8)

which can be used to compute the diagonal elements of the surface derivative of the Green function. Surprisingly, these diagonal elements
play an extremely important role for obtaining accurate results even for coarse boundary discretizations. For this reason it is important to
indicate closed particle boundaries. In the above examples we specify that boundaries p, p1, and p2 are closed. For instance, when the
boundary of a particle is composed of two objects p1 and p2 one indicates this with

p = comparticle({eps1,eps2},{p1,p2},[2,1;2,1],[1,2]);

These calling sequences for comparticle are sufficiently general to cope with even more complicated compositions of dielectric parti-
cles.

5.3. The compoint class

The MNPBEM toolbox also provides a class compoint for points within a dielectric environment. These objects are particularly useful
for computing maps of electromagnetic fields or defining the properties of oscillating dipoles. Consider a list of n positions poslst, i.e. a
n × 3 array, together with a comparticle object p. With

% place the points into the dielectric environment
pt = compoint(p,poslst);
pt = compoint(p,poslst,’medium’,1);
pt = compoint(p,poslst,’mindist’,2);

we can place these points inside the dielectric environment of p. By passing the additional property name ’medium’ we can select the
dielectric media within which points are kept, and with ’mindist’ we can set a minimum distance between the points and the particle
boundaries. Below we give some examples for using compoint objects.

5.4. The compstruct class

Internally, the MNPBEM toolbox stores the scalar and vector functions as compstruct objects, which behave very much like Matlab
struct objects, but must always hold a comparticle or compoint object p and the light wavelength enei

% set up a compstruct object
c = compstruct(p,enei);
% add fields to the object
c.val = val;

In many respects one can treat these objects as normal arrays. This means, we can add or subtract compstruct objects and we can
multiply them with a constant value. In adding or subtracting them, fields that are missing in one of the objects are treated as zeros.
Upon multiplication all fields of the compstruct object are multiplied with the same value. These features are particularly useful for
compstruct object with electromagnetic potentials or fields that can be easily added or scaled.

6. BEM solvers

The quasistatic BEM solver is initialized with

% initialize BEM solver
bem = bemstat(p);
% initialization for given wavelength enei
bem = bemstat(p,enei);
% intialization passing arguments to the BEM solver
bem = bemstat(p,[],op);

For the solution of the full Maxwell equations we simply have to use the solver bemret. When we pass the argument enei to the BEM
solver, the matrices of the BEM approach are computed for the given light wavelength. Alternatively, we can compute the matrices later
through

bem = bem(enei);

For practically all BEM simulations this call will consume most of the computer time.
One can also pass options to the BEM solvers. In general, the BEM approach implemented within the MNPBEM toolbox uses a collocation

scheme where the surface charges and currents σ and h are assumed to be situated at the centroids of the boundary elements. More
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Fig. 6. Results of BEM simulations: (a) surface charges σi , and real part of induced electric field at (b) particle boundary and (c) elsewhere. In the simulations (consult the
demo file demofieldstat.m for details) we consider a plane wave excitation of a gold nanoparticle with a diameter of 10 nm embedded in water.

accurate results could be achieved by performing a linear interpolation of σ and h within the boundary elements. However, so far we
have refrained from such an interpolation because it would make the implementation of the BEM equations much more complicated. In
addition, in comparison with the field-based BEM approaches, which invoke second-order surface derivatives of the Green function, the
collocation scheme for the potential-based BEM approach is expected to be of the same order of accuracy as a linear-interpolation scheme
for a field-based BEM approach. In some cases, e.g. when encountering the elongated surface elements of extruded particles, see Fig. 5,
a pure collocation approach is problematic and it is better to assume that σ and h are constant over the face elements. We then have to
integrate in Gij and its surface derivative over boundary elements j which are sufficiently close to the element i. In order to do so, one
can define in the options

op = green.options(’cutoff’,cutoff);

a cutoff parameter that determines whether such a face integration is performed or the function value between the collocation points
is taken. As will be discussed below, we can pass op also directly to compgreen objects.

6.1. Solving the BEM equations

In the following we examine the working principle of the BEM solvers for the planewave excitation discussed in Section 3

% plane wave excitation for given light polarizations
exc = planewavestat([1,0,0;0,1,0]);
% planewave excitation
e = exc(p,enei);

In the last call we receive a compstruct object e which holds the field phip for the surface derivative ∂φext
∂n of the scalar potential.

Similarly, in the retarded case the returned object contains fields for the scalar and vector potentials at the boundaries, together with their
surface derivatives.

For this external excitation we can now compute the surface charges through

% initialize BEM solver
bem = bem(enei);
% compute surface charge
sig = bem \ e;

Alternatively, we can also put all commands into a single line

% set up BEM solver
bem = bemstat(p);
% initialize BEM solver and compute surface charge
sig = bem \ exc(p,enei);

This calling sequence is simpler but it has the disadvantage that the BEM matrices, whose computation is rather time consuming, are
not stored in bem after the call. If we are only interested in a single type of excitation this is not a problem, but if we want to compute
surface charges for the same wavelength enei but for a different excitation, e.g. dipole excitation, it is better to store the matrices through
bem=bem(enei).

We can now plot the surface charge sig.sig and the electric field at the particle boundary through

% plot real part of surface charge
plot(p,real(sig.sig),’EdgeColor’,’b’);
% electric field at outside of particle boundary
field = bem.field(sig,2);
% plot real part of electric field
plot(p,’cone’,real(field.e),’scale’,0.6);

The results are shown in panels (a) and (b) of Fig. 6.
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6.2. Green functions

Finally, we show how to proceed when we want to compute the electromagnetic fields or potentials elsewhere. To this end, we have
to set up a compgreen object, which remains usually hidden within the BEM solvers. With pt a compoint object of the positions
where the electromagnetic field should be computed and p a comparticle object for the particle boundaries, the Green function can
be initialized with

% set up Green function between points and particle
g = compgreen(pt,p);
% same as above but with additonal cutoff parameter
g = compgreen(pt,p,green.option(’cutoff’,cutoff));

With the help of the Green function we can compute according to Eq. (2) the induced fields and potentials everywhere else. Below we
show the code needed in order to produce Fig. 6(c)

% regular mesh
[x,y] = meshgrid(linspace(-10,10,31));
pt = compoint(p,[x(:),y(:),0*x(:)],’mindist’,1);
% set up Green function between mesh points and particle
g = compgreen(pt,p);
% compute electric field
field = g.field(sig);
% plot particle and real part of electric field
plot(p,’EdgeColor’,’b’);
coneplot(pt.pos,real(field.e),’scale’,0.6);

7. BEM simulations

The MNPBEM toolbox provides two excitation-measurement schemes: one for planewave excitation and the calculation of the scattering
and extinction cross sections, which we have already discussed in Section 3, and one for the excitation of an oscillating dipole and the
calculation of the enhancement of the radiative and total scattering rates.

7.1. Quasistatic versus full BEM simulations

Let us look to the file democputime.m, available in the Demo subdirectory, which compares for the calculation of the scattering cross
sections of a nanosphere the CPU times for different surface discretizations and for the different BEM solvers. In addition to bemstat
and bemret we also show results for the bemstateig solver, which solves the BEM equations using a restricted number of eigenmodes
of the matrix ( ∂G

∂n )i j [22,31,36]

CPU time elapsed for BEM simulations in seconds
#verts #faces bemstat bemstateig bemret

144 284 1.07 0.14 9.31
256 508 4.07 0.42 37.40
400 796 14.01 1.26 129.57
676 1348 62.24 2.97 651.25

From the results it is apparent that the simulations based on the full Maxwell equations are about a factor of ten slower than those based
on the quasistatic approximation. An additional speedup can be achieved for the eigenmode expansion, in the above example we have
used 20 eigenmodes.

The question which BEM solver is the most appropriate one cannot be answered in a unique way.

Quasistatic solvers. The quasistatic solvers bemstat and bemstateig are ideal for testing and getting a feeling of how the results will
approximately look like, at least for structures which are significantly smaller than the light wavelength. It is a matter of taste
what one calls “significantly smaller”, but metallic spheres with diameters below say 50 nm and flat or elongated particles with
dimensions below 100 nm will probably do. If you are dealing with even smaller structures, with dimensions of a few tens of
nanometers, the quasistatic approximation will probably work perfectly in all cases. However, we recommend to compare from
time to time with the results of the full BEM solver bemret.

Full BEM solver. BEM simulations based on the full Maxwell equations are much slower than those performed with the quasistatic BEM
solvers, the main reason being the numerous matrix inversions. For a given number N of particle faces, the time needed for a
matrix inversion is of the order N3. For this reason it is good to keep the number of faces and vertices as small as possible.
Nevertheless, in many cases it is indispensable to solve the full Maxwell equations. Typical simulation times for the bemret
solver are in the range between minutes and a few hours.

7.2. Dipole excitations

We next discuss how to simulate the excitation of an oscillating electric dipole located at some distance from a nanoparticle. This
situation corresponds to the decay of an excited molecule or quantum dot, whose decay rates become enhanced through the modified
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Fig. 7. Enhancement of the total and radiative decay rates of a dipole located in the vicinity of a metallic nanosphere with a diameter of 60 nm. The dipole is located on the
z axis at different distances from the sphere center. We use a dielectric function representative for gold [33] and a refractive index of nb = 1.33 for the embedding medium.
The results of the BEM simulation (demospectrumret.m) are almost indistinguishable from those of Mie theory.

photonic environment. Similarly, the dipole excitation can be also used to compute the dyadic Green function of Maxwell’s theory (see
below).

The class dipolestat allows for an implementation of this problem. Suppose that we have a compoint object pt with the positions
of the dipoles. To implement a dipolestat object we call

% default dipole orientations x, y, z
dip = dipolestat(pt);
% dipole orientations x, z
dip = dipolestat(pt,[1,0,0;0,0,1]);
% user-defined dipole vectors for each position
dip = dipolestat(pt,vec,’full’);

Once we have set up the dipole excitation, we can use it in combination with the quasistatic BEM solvers (for the simulation of the full
Maxwell equations we simply have to use dipoleret, in order to compute both the scalar and vector potentials of the external dipole
excitation, as well as bemret). The enhancement of the radiative and total decay rates, with respect to the free-space decay rate, is then
computed with [6,20]

% BEM simulation
sig = bem \ dip(p,enei );
% enhancement of total and radiative decay rate
[tot,rad] = dip.decayrate(sig);

Fig. 7 shows the results of demodipoleret.m for an oscillating dipole located in the vicinity of a metallic nanosphere, as well as the
comparison with Mie theory.

Finally, through the relation

E(r) = k2G
(
r, r′;ω) · d (9)

we are in the position to compute the dyadic Green function G(r, r′;ω) of Maxwell theory. To this end we place an oscillating dipole at
position r′ , solve the BEM equations for a given wavenumber k = ω/c, and finally compute the electric field at the positions r according
to the prescription given in Section 6.

7.3. Setting up a new excitation-measurement scheme

In some situations one might like to set up a new excitation-measurement scheme, e.g., to simulate a near field excitation or electron
energy loss spectroscopy (EELS). Setting up a new excitation-measurement scheme can be done with a moderate amount of work. In the
following we sketch how this should be done. Further information can be found in the help pages.

We recommend to use Matlab classes. An object exc of this class should return with exc(p,enei) the potentials (and their surface
derivatives) for the external perturbation at the particle boundary, which can be achieved by implementing the subsref function. To see
how this can be done efficiently, we suggest to inspect the planewave and dipole classes of the toolbox. As for the measurement im-
plementation, it probably suffices to set up a compgreen object and to compute with it the induced electromagnetic fields or potentials,
which then can be further processed.
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8. Summary and outlook

To summarize, we have presented a Matlab toolbox MNPBEM suited for the simulation of metallic nanoparticles (MNP) using a boundary
element method (BEM) approach. The toolbox relies on the concept of Matlab classes which can be easily combined, such that one can
adapt the simulation programs flexibly for various applications. All technicalities of the potential-based BEM approach remain hidden
within the classes. The toolbox provides detailed help pages and a collection of demo programs. Several plot commands allow to access
the full potential of the Matlab program and facilitate the analysis and interpretation of the simulation results.

As regarding simulation time and accuracy, we believe that the toolbox performs well and can compete with the other simulation
toolkits used in the plasmonics community, although more detailed tests are needed for clarification. There is plenty of room for improve-
ments, such as multigrid methods or interpolation schemes beyond the presently used collocation scheme. We are presently testing the
implementation of mirror symmetry, which can speed up simulations by about one order of magnitude, as well as of particles placed
on substrates or embedded in layer structures. Both features are working fine, but we have not included them in this version of the
toolbox because they are still somewhat experimental. Future work will also address periodic structures and static electric fields, such as
needed for electrochemistry. Altogether, we hope that the MNPBEM toolbox will serve the plasmonics community as a useful and helpful
simulation toolkit.
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