End of this page section.

Begin of page section: Contents:

Presence 10.01.2022 17:00 - 18:00

Venue:

Location: to be announced

Participation

Add to calendar: Add to calendar

PhD-Seminar "Experimental- und Festkörperphysik"

Marko Simic: "Optofluidic Force Induction Scheme for the Characterization of Nanoparticle Ensembles"

Momentum transfer from light to matter provides the basic principle of optical tweezers, which have been awarded the Nobel Prize in Physics 2018. [1] Most studies have hitherto employed this principle for trapping and manipulation of single nanoparticles. However, in a microfluidic channel one can also monitor the effect of optical forces exerted on ensembles of dielectric nanoparticles, to acquire knowledge about various nanoparticle parameters, such as size, shape or material distributions.

In this paper we present an optofluidic force induction scheme (OF2i) for real-time, on-line optical characterization of large ensembles of nanoparticles. [2] Our experimental setup builds on precisely controlled fluidics as well as optical elements, in combination with a focused laser beam with orbital angular momentum. By monitoring the single-particle light scattering and nanoparticle trajectories, we obtain detailed number-based information about the properties of the individually tracked particles.

We analyse the trajectories using a simulation approach based on Maxwell’s equations and Mie’s theory, in combination with realistic laser fields and fluidic forces. [3] We discuss the basic physical principles underlying the OF2i scheme and demonstrate its applicability using standardized Latex particles with a pre-determined size distribution as calibration reference. Our measurement scheme is applied to different particle systems and evaluated within our theoretical framework, where we also monitor evolutionary processes over large time scales. Our results prove that OF2i provides a flexible work bench for numerous pharmaceutical and technological applications, as well as medical diagnostics.

[1] Ashkin A., PNAS 1997, 94, 4853−4860.
[2] C. Hill. (2020). EU Patent No. 3422364B1. European Patent Office.
[3] A. D. Kiselev and D. O. Plutenko, Phys. Rev. A 2014, 89, 043803.

 

Der Vortrag kann in PRÄSENZ im HS 05.01 oder virtuell via uniMEET mit folgendem Link besucht werden:

https://unimeet.uni-graz.at/b/pus-exy-jx7

Interessent*in sind unter der Einhaltung der aktuell gültigen Covid-19 Regeln herzlich willkommen.

 

pdf

 

Eine Programmübersicht zum 653.122  Dissertant*innenseminar (Experimentalphysik und Festkörperphysik) finden Sie hier:

https://homepage.uni-graz.at/de/peter.puschnig/teaching/dissertantenseminar-ws2021-22/

 

Current
April 2024
Monday Tuesday Wednesday Thursday Friday Saturday Sunday
1 Monday, 1. April 2024 2 Tuesday, 2. April 2024 3 Wednesday, 3. April 2024 4 Thursday, 4. April 2024 5 Friday, 5. April 2024 6 Saturday, 6. April 2024 7 Sunday, 7. April 2024
8 Monday, 8. April 2024 9 Tuesday, 9. April 2024 10 Wednesday, 10. April 2024 11 Thursday, 11. April 2024 12 Friday, 12. April 2024 13 Saturday, 13. April 2024 14 Sunday, 14. April 2024
15 Monday, 15. April 2024 16 Tuesday, 16. April 2024 17 Wednesday, 17. April 2024 18 Thursday, 18. April 2024 19 Friday, 19. April 2024 20 Saturday, 20. April 2024 21 Sunday, 21. April 2024
22 Monday, 22. April 2024 23 Tuesday, 23. April 2024 24 Wednesday, 24. April 2024 25 Thursday, 25. April 2024 26 Friday, 26. April 2024 27 Saturday, 27. April 2024 28 Sunday, 28. April 2024
29 Monday, 29. April 2024 30 Tuesday, 30. April 2024 1 Wednesday, 1. May 2024 2 Thursday, 2. May 2024 3 Friday, 3. May 2024 4 Saturday, 4. May 2024 5 Sunday, 5. May 2024

End of this page section.

Begin of page section: Additional information:

End of this page section.