Beginn des Seitenbereichs:
Seitenbereiche:

  • Zum Inhalt (Zugriffstaste 1)
  • Zur Positionsanzeige (Zugriffstaste 2)
  • Zur Hauptnavigation (Zugriffstaste 3)
  • Zur Unternavigation (Zugriffstaste 4)
  • Zu den Zusatzinformationen (Zugriffstaste 5)
  • Zu den Seiteneinstellungen (Benutzer/Sprache) (Zugriffstaste 8)
  • Zur Suche (Zugriffstaste 9)

Ende dieses Seitenbereichs. Zur Übersicht der Seitenbereiche

Beginn des Seitenbereichs:
Seiteneinstellungen:

Deutsch de
English en
Suche
Anmelden

Ende dieses Seitenbereichs. Zur Übersicht der Seitenbereiche

Beginn des Seitenbereichs:
Suche:

Suche nach Details rund um die Uni Graz
Schließen

Ende dieses Seitenbereichs. Zur Übersicht der Seitenbereiche


Suchen

Beginn des Seitenbereichs:
Hauptnavigation:

Seitennavigation:

  • Universität

    Universität
    • Die Uni Graz im Portrait
    • Organisation
    • Strategie und Qualität
    • Fakultäten
    • Universitätsbibliothek
    • Jobs
    • Campus
    Lösungen für die Welt von morgen entwickeln – das ist unsere Mission. Unsere Studierenden und unsere Forscher:innen stellen sich den großen Herausforderungen der Gesellschaft und tragen das Wissen hinaus.
  • Forschungsprofil

    Forschungsprofil
    • Unsere Expertise
    • Forschungsfragen
    • Forschungsportal
    • Forschung fördern
    • Forschungstransfer
    • Ethik in der Forschung
    Wissenschaftliche Exzellenz und Mut, neue Wege zu gehen. Forschung an der Universität Graz schafft die Grundlagen dafür, die Zukunft lebenswert zu gestalten.
  • Studium

    Studium
    • Studieninteressierte
    • Aufnahmeverfahren
    • Lehramt Aufnahmeverfahren
    • Infos für Studierende
  • Community

    Community
    • International
    • Am Standort
    • Forschung und Wirtschaft
    • Absolvent:innen
    Die Universität Graz ist Drehscheibe für internationale Forschung, Vernetzung von Wissenschaft und Wirtschaft sowie für Austausch und Kooperation in den Bereichen Studium und Lehre.
  • Spotlight
Jetzt aktuell
  • 23. Mai: Uni Vibes
  • Infos zu Studienwahl & Anmeldung
  • Crowdfunding entdecken
  • Klimaneutrale Uni Graz
  • Gefragte Forscher:innen
  • Arbeitgeberin Uni Graz
Menüband schließen

Ende dieses Seitenbereichs. Zur Übersicht der Seitenbereiche

Beginn des Seitenbereichs:
Sie befinden sich hier:

Universität Graz Naturwissenschaften Institut für Physik Neuigkeiten Sonnenstürme: Stellare "Wutausbrüche" häufiger als angenommen
  • Über das Institut
  • Unsere Forschung
  • Persönlichkeiten
  • Studienservice
  • Neuigkeiten
  • Veranstaltungen

Ende dieses Seitenbereichs. Zur Übersicht der Seitenbereiche

Montag, 16.12.2024

Sonnenstürme: Stellare "Wutausbrüche" häufiger als angenommen

Ein leuchtend orangefarbenes Licht, das aus der Oberfläche einer Sonne herausstrahlt, vom Weltraum aus gesehen

KI-generiertes Stilisiertes Symbolbild eines Superflares; Foto: Uni Graz/Midjourney

Eine internationale Studie unter Mitwirkung der Universität Graz zeigt, wie oft sonnenähnliche Sterne zu gewaltigen Strahlungsausbrüchen neigen. Die Ergebnisse werfen ein neues Licht auf das potenzielle Risiko für die Erde – und betonen die Notwendigkeit genauer Weltraumwetter-Vorhersagen.

Die Sonne bestimmt den Tagesablauf aller Lebewesen und die jeweiligen Sonnenwenden im Sommer und im Winter sind in zahlreichen Kulturen mit unterschiedlichen Feiern und Festlichkeiten verbunden. Und aus 150 Millionen Kilometer Entfernung erscheint sie uns auch recht friedlich. Doch wenn man näher hinsieht, entpuppt sich die Sonne als äußerst temperamentvoller Stern. Davon zeugen allein die ungewohnt starken Sonnenstürme des vergangenen Jahres, die sich durch eindrucksvolle Polarlichter selbst in niedrigen Breiten bemerkbar gemacht haben. Doch kann unser Stern auch zur wahren Furie werden? Belege für heftigste solare „Wutanfälle“ finden sich in vorzeitlichen Baumstämmen und in Proben jahrtausendealten Gletschereises. Die Häufigkeit von Superflares lässt sich diesen indirekten Quellen jedoch nicht entnehmen. Und direkte Messungen der Strahlungsmenge, welche die Erde von der Sonne erreicht, gibt es erst seit Beginn des Weltraumzeitalters.

Eine weitere Möglichkeit, dem langfristigen Verhalten unseres Sterns auf die Schliche zu kommen, bietet – wie in der aktuellen Studie – der Blick in die Sterne. Moderne Weltraumteleskope beobachten abertausende von Sternen und zeichnen ihre Helligkeitsschwankungen auf. Superflares, die innerhalb kurzer Zeit Energiemengen von mehr als Quadrilliarden Joule freisetzen, verraten sich in den Messdaten durch kurze, sehr heftige Helligkeitsspitzen im sichtbaren Licht. In einer aktuellen Studie wertete das Team von Sami Solanki, Direktor am Max-Planck-Institut für Sonnenforschung die Messdaten von 56450 sonnenähnlichen Sternen aus, die das NASA-Weltraumteleskop Kepler in der Zeit von 2009 bis 2013 im Visier hatte.

 „Wir können die Sonne nicht über tausende von Jahren beobachten“, erklärt Solanki, Koautor der Studie, den Grundgedanken der Untersuchung. „Stattdessen können wir aber das Verhalten tausender sonnenähnlicher Sterne über kurze Zeiträume überwachen. Das hilft uns einzuschätzen, wie häufig es zu Superflares kommt“, fügt er hinzu. Zu dem Team zählten Forschende  der Universität von Oulu (Finnland), des Nationalen Astronomischen Observatoriums Japans, der Universität von Colorado Boulder (USA), des Center for Atomic and Alternative Energies Paris Saclay, der Universität von Paris-Cité sowie der Universität Graz.  

Ferne Sterne als Blaupause der Sonne

Der frisch berufene Professor für Astrophysik, Alexander Shapiro, betont die Bedeutung der Studie für die Uni Graz: "Die Untersuchung der Sonnenaktivität und der Sonneneruptionen ist seit mehr als zwei Jahrzehnten einer der Schwerpunkte der Astrophysiker an der Universität Graz. Seit kurzem erstreckt sich ihre Forschung auch auf weit entfernte Sterne, die uns bei unserem Bestreben, die Sonne und die solar-terrestrische Verbindung zu verstehen, fehlende Puzzleteile liefern können. Die in der Studie genutzten Daten des Kepler-Teleskops liefern in ihrer Gesamtheit das Zeugnis von 220000 Jahren stellarer Aktivität.“

Entscheidend ist dabei die sorgfältige Auswahl der Sterne. Schließlich sollen sie sich durch besonders enge „Verwandtschaftsbeziehungen“ zur Sonne auszeichnen. Die Wissenschaftler:innen ließen deshalb nur solche Sterne zu, deren Oberflächentemperatur und Helligkeit den Werten der Sonne ähneln. Zudem schlossen die Forschenden zahlreiche Fehlerquellen aus wie etwa kosmische Strahlung, vorbeiziehende Asteroiden oder Kometen sowie nicht-sonnenähnliche Sterne, die auf Aufnahmen des Weltraumteleskops rein zufällig in der Nähe eines sonnenähnlichen Kollegen aufblitzen. Dafür wertete das Team die nur wenige Pixel großen Bilder jedes Verdachts-Superflares sorgfältig aus und ließ nur diejenigen gelten, die sich verlässlich einem der ausgewählten Sterne zuordnen ließen.

Auf diese Weise identifizierten die Forschenden 2889 Superflares auf 2527 der 56450 betrachteten Sterne. Demnach schleudert im Durchschnitt ein sonnenähnlicher Stern einen Superflare pro Jahrhundert ins All.

Überraschend häufig

„Dass sonnenähnliche Sterne so häufig zu gigantischen Strahlungsausbrüchen neigen, hat uns sehr überrascht“, sagt Valeriy Vasilyev vom MPS, Erstautor der neuen Studie. Frühere Bestandsaufahmen anderer Forschungsgruppen hatten Zeitabstände von durchschnittlich tausend oder sogar zehntausend Jahren gefunden. Allerdings konnten frühere Studien nicht die genaue Quelle des beobachteten Helligkeitsblitzes bestimmen und mussten sich deshalb auf Sterne beschränken, die auf den Teleskop-Aufnahmen keine zu nahen Nachbarn haben. Die aktuelle Studie dürfte die bisher präziseste und empfindlichste sein.

Größere durchschnittliche Zeitabstände zwischen solaren Extremereignissen legten bisher auch Untersuchungen nahe, die auf der Erde nach Hinweisen für heftige Sonnenstürme suchen. Trifft ein besonders starker Fluss energetischer Teilchen von der Sonne auf die Erdatmosphäre, entsteht eine messbare Menge radioaktiver Atome wie etwa des radioaktiven Kohlenstoff-Isotops 14C. Diese lagern sich in „natürlichen Archiven“ wie etwa in Baumringen und Gletschereis ein. Auch Jahrtausende später lässt sich durch Messungen der 14C-Mengen mit modernen Techniken auf den plötzlichen Einfall hochenergetischer Sonnenteilchen schließen.

Auf diese Weise konnten Forschende innerhalb der vergangenen zwölftausend Jahren fünf extreme Teilchenausbrüche der Sonne und drei Kandidaten für solche Ausbrüche identifizieren. Der heftigste dürfte sich im Jahre 775 unserer Zeitrechnung ereignet haben. Allerdings ist es gut möglich, dass es in der Vergangenheit auf der Sonne zu mehr solcher heftigen Teilchenausbrüchen und auch zu mehr Superflares gekommen ist. „Es ist unklar, ob gigantische Strahlungsausbrüche immer mit Teilchenausbrüchen einhergehen und wie beide Phänomene zusammenhängen. Weitere Forschung ist notwendig“, gibt Koautor Ilya Usoskin von der Universität im finnischen Oulu zu Bedenken. Der Blick auf die irdischen Zeugnisse vergangener Sonneneruptionen könnte die Häufigkeit von Superflares deshalb unterschätzen.

Vorhersage für Weltraumwetter

Wann sich die schlechte Laune der Sonne das nächste Mal besonders heftig entlädt, lässt sich der neuen Studie nicht entnehmen. Doch die Ergebnisse mahnen zur Vorsicht. „Die neuen Zahlen erinnern eindringlich daran, dass auch extremste Sonnenstürme zum natürlichen Repertoire der Sonne gehören“, so Koautorin Natalie Krivova vom MPS. Beim Carrington-Ereignis von 1859, einem der heftigsten Sonnenstürme der vergangenen 200 Jahre, brach in weiten Teilen Nordeuropas und Nordamerikas das Telegrafennetzwerk zusammen. Der dazugehörige Strahlungsausbruch setzte Schätzungen zur Folge nur ein Hundertstel der Energie eines Superflares frei. Heute wären bei einem solchen Ereignis neben der Infrastruktur auf der Erdoberfläche vor allem Satelliten gefährdet.

Als wichtigste Vorbereitung auf starke Sonnenstürme gilt deshalb eine verlässliche und rechtzeitige Vorhersage. Beispielsweise lassen sich Satelliten vorsorglich abschalten. Ab 2031 soll die ESA-Raumsonde Vigil bei solchen Vorhersagen helfen. Von ihrer Beobachtungsposition im All schaut sie von der Seite auf die Sonne und bemerkt so eher als erdnahe Sonden, wenn sich auf unserem Stern Prozesse zusammenbrauen, die gefährliches Weltraumwetter auslösen können. Das MPS entwickelt derzeit das Instrument Polarimetric and Magnetic Imager für die Mission.

Erstellt von Max-Planck-Institut für Sonnenforschung; Roman Vilgut

Weitere Artikel

Potential auf dem Platz

Das 38. Hallenfußball-Turnier für Bedienstete von Steirischen Universitäten hat mit Beteiligung von Physikern stattgefunden. Wir suchen Verstärkung für unser Fußballteam.

Molekulare Orbitale entschlüsselt

Eine kürzlich in Physical Review B veröffentlichte Arbeit von Forschern des „Orbital Cinema“-Teams der Universität Graz und des Forschungszentrums Jülich stellt einen bemerkenswerten Durchbruch in der molekularen Elektronik dar. Das Team unter der Leitung von Peter Puschnig und Stefan Tautz hat erfolgreich die elektronische Struktur von Bisanthen—einem Molekül, das als Nano-Graphen-Flocke betrachtet werden kann—auf einer Metalloberfläche praktisch vollständig aufgeklärt. Mithilfe einer am Institut für Physik entwickelten Technik namens Photoemissions-Orbitaltomographie konnten sie die Elektronenverteilung in einer bis dato unerreicht großen Anzahl von 38 (!) Molekülorbitalen entschlüsseln.

Podcast: Quanten und Philosophie

Welche Bedeutung hat Quantenphysik, und was hat es mit Messungen auf sich?

Ein Blick auf das Rekordjahr 2024: Historische Temperaturwerte an der Universität Graz

An der meteorologischen Station der Universität Graz werden seit mehr als 130 Jahren umfangreiche Daten zur Lufttemperatur erhoben. Diese Werte geben nicht nur interessante Einblicke in das Klima der Region, sondern ermöglichen auch tiefere Einblicke in die langfristige Entwicklung des Wetters.

Beginn des Seitenbereichs:
Zusatzinformationen:

Universität Graz
Universitätsplatz 3
8010 Graz
  • Anfahrt und Kontakt
  • Pressestelle
  • Moodle
  • UNIGRAZonline
  • Impressum
  • Datenschutzerklärung
  • Cookie-Einstellungen
  • Barrierefreiheitserklärung
Wetterstation
Uni Graz

Ende dieses Seitenbereichs. Zur Übersicht der Seitenbereiche

Ende dieses Seitenbereichs. Zur Übersicht der Seitenbereiche

Beginn des Seitenbereichs:

Ende dieses Seitenbereichs. Zur Übersicht der Seitenbereiche