Begin of page section:
Page sections:

  • Go to contents (Accesskey 1)
  • Go to position marker (Accesskey 2)
  • Go to main navigation (Accesskey 3)
  • Go to sub navigation (Accesskey 4)
  • Go to additional information (Accesskey 5)
  • Go to page settings (user/language) (Accesskey 8)
  • Go to search (Accesskey 9)

End of this page section. Go to overview of page sections

Begin of page section:
Page settings:

English en
Deutsch de
Search
Login

End of this page section. Go to overview of page sections

Begin of page section:
Search:

Search for details about Uni Graz
Close

End of this page section. Go to overview of page sections


Search

Begin of page section:
Main navigation:

Page navigation:

  • University

    University
    • About the University
    • Organisation
    • Faculties
    • Library
    • Working at University of Graz
    • Campus
    Developing solutions for the world of tomorrow - that is our mission. Our students and our researchers take on the great challenges of society and carry the knowledge out.
  • Research Profile

    Research Profile
    • Our Expertise
    • Research Questions
    • Research Portal
    • Promoting Research
    • Research Transfer
    • Ethics in Research
    Scientific excellence and the courage to break new ground. Research at the University of Graz creates the foundations for making the future worth living.
  • Studies

    Studies
    • Prospective Students
    • Students
  • Community

    Community
    • International
    • Location
    • Research and Business
    • Alumni
    The University of Graz is a hub for international research and brings together scientists and business experts. Moreover, it fosters the exchange and cooperation in study and teaching.
  • Spotlight
Topics
  • Our digital Advent calendar
  • Sustainable University
  • Researchers answer
  • Work for us
Close menu

End of this page section. Go to overview of page sections

Begin of page section:
You are here:

University of Graz Natural sciences Institute of Physics News Tanz der Elektronenwolken
  • About the institute
  • Our research
  • Personalities
  • Student Services
  • News
  • Events

End of this page section. Go to overview of page sections

Thursday, 10 April 2014

Tanz der Elektronenwolken

Schwingungsmuster unterschiedlicher so genannter plasmonischer Anregungen einer Silber-Nanoscheibe mit 200 nm Durchmesser.

Schwingungsmuster unterschiedlicher so genannter plasmonischer Anregungen einer Silber-Nanoscheibe mit 200 nm Durchmesser.

Das Elektronenmikroskop ermöglicht die Untersuchung von optischen (plasmonischen) Anregungen auf metallischen Nanostrukturen mit extrem hoher Auflösung.

Das Elektronenmikroskop ermöglicht die Untersuchung von optischen (plasmonischen) Anregungen auf metallischen Nanostrukturen mit extrem hoher Auflösung.

NAWI-Graz-Wissenschafter entdecken den Schlüssel zum Schwingungsverhalten von Plasmonen

Plasmonen sind die Hoffnungsträger auf der Suche nach neuen Möglichkeiten zur ultra-schnellen Datenübertragung im Nanoformat. Dabei handelt es sich um kollektiv schwingende Elektronenwolken an metallischen Oberflächen. Plasmonen bergen ein ungeheures Potenzial für neue Technologien mit vielfältigen denkbaren Anwendungen – von der Chip-Industrie über die Sensorik bis zur Medizintechnik. Voraussetzung ist, ihr Verhalten im Detail zu verstehen. Einen fundamentalen Beitrag dazu haben nun Wissenschafter der Karl-Franzens-Universität Graz und der TU Graz geleistet. Die Forscher fanden eine universelle Formel, mit der sich sämtliche Schwingungsmuster von Plasmonen einfach berechnen lassen. Die bahnbrechenden Forschungsergebnisse wurden in der jüngsten Ausgabe des renommierten Wissenschaftsjournals Nature Communications veröffentlicht.

Plasmonen entstehen, wenn ein Lichtstrahl in einer bestimmten Weise auf metallische Nanostrukturen trifft und die Elektronen an deren Oberfläche kollektiv in Schwingung versetzt. Das Potenzial der Plasmonen liegt darin, dass sie die positiven Eigenschaften von Licht und Elektronen vereinen. Licht ist ein schnelles „Transportmittel“, braucht jedoch aufgrund seiner Wellenlänge viel Raum und ist daher für die Energieübertragung im Nanobereich nicht geeignet. Elektronen hingegen sind langsam, dafür aber in stark miniaturisierten Anwendungen, wie zum Beispiel Computer-Chips, steuerbar. „Plasmonen kombinieren die optischen und elektronischen Vorteile: Sie können viele Informationen auf engstem Raum mit Lichtgeschwindigkeit übertragen“, erklärt Univ.-Prof. Dr. Joachim Krenn, Leiter der Arbeitsgruppe Experimentelle Nano-Optik am Institut für Physik der Karl-Franzens-Universität Graz. Joachim Krenn hat mit seinem Team – allen voran Dipl.-Ing. Franz Schmidt – sowie in enger Kooperation mit den Forschungsgruppen um Ao.Univ.-Prof. Dr. Ulrich Hohenester aus der Theoretischen Nano-Physik der Karl-Franzens-Universität und Ao.Univ.-Prof. Dr. Ferdinand Hofer, Leiter des Instituts für Elektronenmikroskopie und Nanoanalytik (FELMI) der TU Graz, den Schlüssel zum Schwingungsverhalten von Plasmonen entdeckt. Die Wissenschafter konnten erstmals zeigen, dass dieses einer ganz bestimmten Ordnung folgt – analog zur Systematik von akustischen Schwingungen, die Ernst Florens Friedrich Chladni im 18. Jahrhundert beschrieb, bekannt als „Chladnische Klangfiguren“.

„Sind Umfang und Durchmesser von Nanopartikeln bekannt, lassen sich die opto-elektronischen Schwingungen an deren Oberfläche mit einer einfachen Formel berechnen“, fasst Ulrich Hohenester zusammen. Dieses Wissen ist entscheidend für die Konstruktion effizienter miniaturisierte Bauteile in verschiedenen technologischen Anwendungen.

Die fundamentalen neuen Erkenntnisse sind Ergebnis der besonderen Expertise und erfolgreichen Zusammenarbeit der drei genannten Forschungsgruppen im Rahmen von NAWI Graz, der strategischen Kooperation von Karl-Franzens-Universität und TU Graz im Bereich der Naturwissenschaften. Die Nano-Optik profitiert von großer Erfahrung und modernster Technik bei der Herstellung von Nano-Strukturen. Aus Fördermitteln der jüngsten Hochschulraumstruktur-Initiative des Wissenschaftsministeriums konnte die Finanzierung einer neuen Lithographie-Anlage um 1,2 Millionen Euro gesichert werden.

Unverzichtbare Unterstützung erhält die experimentelle Forschung durch die Theoretische Nano-Physik, die sich der Wirklichkeit mit Simulationen am Computer nähert. Das außergewöhnliche Know-how des FELMI eröffnet detaillierte Einblicke: Mit Hilfe der Elektronenmikroskopie lassen sich Energiezustände von Elektronen beobachten, die Auskunft über die opto-elektronischen Eigenschaften der Plasmonen geben.

 

Publikation:
Universal Dispersion of Surface Plasmons in Flat Nanostructures
Franz-Philipp Schmidt, Harald Ditlbacher, Ulrich Hohenester, Andreas Hohenau, Ferdinand Hofer, Joachim R. Krenn
Nature Communications
doi 10.1038/ncomms4604

created by Gudrun Pichler

Related news

New FWF – WEAVE Project "Longer Acenes: Synthesis, Interfaces, and Thin Films"

Unlocking the Potential of Longer Acenes: A New Era in Organic Electronics

Two Awards for an Outstanding Dissertation

Andreas Windischbacher received two prestigious awards for his outstanding doctoral dissertation. On March 17th, 2025, he was presented with the golden ring of honour of the Republic of Austria by our Federal President as part of the Promotio sub auspiciis Praesidentis rei publicae. On the same day, he was also selected for the Josef Krainer Förderungspreis, whose ceremonial presentation, however, took place later on November 12th, 2025.

NanoGraz Careers & Ideas Days 2025: Career paths after the doctorate

On October 13 and 14, the consortium NanoGraz of the Research Career Campus at the University of Graz organized a two-day event to inform the consortium's doctoral students about their career options after completing their doctorate. In addition to exciting lectures by early-career researchers as well as representatives from industry, the Austrian Science Fund (FWF), and the research management of the University of Graz, a brainstorming competition took place on the second day, in which the participants had the opportunity to develop their own joint mini-projects.

Seed-Funding Grant: Bringing Ideas to Life Together

With the new OpNaQ Seed-Funding Grant, the OpNaQ Group, part of the Institute of Physics, lifts collaboration within the research group to a whole new level, and supports sub-groups in turning their ideas into concrete projects.

Begin of page section:
Additional information:

University of Graz
Universitaetsplatz 3
8010 Graz
Austria
  • Contact
  • Web Editors
  • Moodle
  • UNIGRAZonline
  • Imprint
  • Data Protection Declaration
  • Accessibility Declaration
Weatherstation
Uni Graz

End of this page section. Go to overview of page sections

End of this page section. Go to overview of page sections

Begin of page section:

End of this page section. Go to overview of page sections