Begin of page section:
Page sections:

  • Go to contents (Accesskey 1)
  • Go to position marker (Accesskey 2)
  • Go to main navigation (Accesskey 3)
  • Go to sub navigation (Accesskey 4)
  • Go to additional information (Accesskey 5)
  • Go to page settings (user/language) (Accesskey 8)
  • Go to search (Accesskey 9)

End of this page section. Go to overview of page sections

Begin of page section:
Page settings:

English en
Deutsch de
Search
Login

End of this page section. Go to overview of page sections

Begin of page section:
Search:

Search for details about Uni Graz
Close

End of this page section. Go to overview of page sections


Search

Begin of page section:
Main navigation:

Page navigation:

  • University

    University
    • About the University
    • Organisation
    • Faculties
    • Library
    • Working at University of Graz
    • Campus
    Developing solutions for the world of tomorrow - that is our mission. Our students and our researchers take on the great challenges of society and carry the knowledge out.
  • Research Profile

    Research Profile
    • Our Expertise
    • Research Questions
    • Research Portal
    • Promoting Research
    • Research Transfer
    • Ethics in Research
    Scientific excellence and the courage to break new ground. Research at the University of Graz creates the foundations for making the future worth living.
  • Studies

    Studies
    • Prospective Students
    • Students
  • Community

    Community
    • International
    • Location
    • Research and Business
    • Alumni
    The University of Graz is a hub for international research and brings together scientists and business experts. Moreover, it fosters the exchange and cooperation in study and teaching.
  • Spotlight
Topics
  • Our digital Advent calendar
  • Sustainable University
  • Researchers answer
  • Work for us
Close menu

End of this page section. Go to overview of page sections

Begin of page section:
You are here:

University of Graz Natural sciences Institute of Physics News Light keeps spinning
  • About the institute
  • Our research
  • Personalities
  • Student Services
  • News
  • Events

End of this page section. Go to overview of page sections

Friday, 05 February 2021

Light keeps spinning

Making light spin by focussing. Image: Uni Graz/Banzer

Making light spin by focussing. Image: Uni Graz/Banzer

In collaboration with international teams from the UK, Japan, France and the US, researchers at the University of Graz and the Max Planck Institute for the Science of Light have shown that you not always have to use polarization optics to polarize light. They propose theoretically and prove experimentally that via tight focusing or other means of spatial confinement, fully unpolarized light can be polarized circularly.

One of the most intriguing features of electromagnetic waves in general and light in particular is their polarization. It defines how the electric field component of an electromagnetic wave is oriented and changes with time. If the electric field oscillates in a fixed plane, the wave is said to be linearly polarized while a field spinning about an axis – usually the propagation direction of the light wave – is circularly or elliptically polarized. The rotational dynamics of elliptically or circularly polarized light also give rise to an intimately related property, the so-called spin (angular momentum). Just like the propeller of an airplane, also the spinning electric field of light carries angular momentum. Naturally and quite intuitively, if light is totally unpolarised, just like the light coming from a light bulb or LED, the polarization is not defined and also its spin should vanish.

About a decade ago, members of the aforementioned international teams and their co-workers discovered that light might also behave like a spinning wheel, i.e., the angular momentum can be orthogonal to the propagation direction of a light wave with the field spinning in the propagation plane, just like the spokes of a wheel. Originally considered as an exotic and exclusive phenomenon, it was shown by the authors and their colleagues that this feature of so-called transverse spin is a ubiquitous feature arsing in various schemes involving spatial confinement of light. 

In a collaborative project, the groups from Austria, Germany, the UK, Japan, France and the US now brought together these two concepts of unpolarized light and transverse spin in two conceptually quite different experiments and a unified theoretical framework. Counter-intuitively they showed that fully unpolarised light beams can be polarized circularly – and therefore also feature non-zero (transverse) spin – by spatial confinement. This is a remarkable finding because it would allow for polarizing light and making it spin by, e.g., simple focusing, which seems to contradict the simple and established understanding of spin and polarization of unpolarised light. Key to this discovery is the intricate structure of light at micro- and nanoscale and the ubiquity of transverse spin.

The results of this study are discussed in an article published recently in Nature Photonics (https://doi.org/10.1038/s41566-020-00733-3). This international collaboration sheds new light on the properties of unpolarized waves and fields, opening up a whole new avenue for the implementation of polarization-sensitive experiments in various areas of optics.

J. S. Eismann, L. H. Nicholls, D. J. Roth, M. A. Alonso, P. Banzer, F. J. Rodríguez-Fortuño, A. V. Zayats, F. Nori & K. Y. Bliokh, „Transverse spinning of unpolarized light“, Nature Photonics (2020)

https://doi.org/10.1038/s41566-020-00733-3

Nature Photonics News & Views:

https://www.nature.com/articles/s41566-020-00756-w

News article on PhysicsWorld:

https://physicsworld.com/a/spin-in-unpolarized-light-defies-conventional-picture/

 

Contact: Peter Banzer; Optics of Nano and Quantum Materials (website)

 

Related news

How Fast Is Ultrafast?

In a recent episode of the podcast Bridge the Gap, Tommaso Mazzocchi and Daniel Werner, two graduate physics students, interviewed Peter Puschnig about ultrafast spectroscopy and his current research. The conversation spans fundamental quantum-mechanical concepts and leads up to state-of-the-art methods for observing electronic dynamics in real time. The episode is titled “How fast is ultrafast spectroscopy?” and is aimed at students and anyone interested in modern physics research.

Accelerated communication with the Kanzelhöhe: solar observatory moves closer to the university

From mid-December, the train journey from Graz to Villach will be reduced to just over an hour. This faster railway connection through the Koralm Tunnel will also bring the Kanzelhöhe Observatory for Solar and Environmental Research closer. Although this unique research station at 1500 metres above sea level is located on the Carinthian Gerlitzen, it has been part of the University of Graz for more than 75 years.

New FWF – WEAVE Project "Longer Acenes: Synthesis, Interfaces, and Thin Films"

Unlocking the Potential of Longer Acenes: A New Era in Organic Electronics

Two Awards for an Outstanding Dissertation

Andreas Windischbacher received two prestigious awards for his outstanding doctoral dissertation. On March 17th, 2025, he was presented with the golden ring of honour of the Republic of Austria by our Federal President as part of the Promotio sub auspiciis Praesidentis rei publicae. On the same day, he was also selected for the Josef Krainer Förderungspreis, whose ceremonial presentation, however, took place later on November 12th, 2025.

Begin of page section:
Additional information:

University of Graz
Universitaetsplatz 3
8010 Graz
Austria
  • Contact
  • Web Editors
  • Moodle
  • UNIGRAZonline
  • Imprint
  • Data Protection Declaration
  • Accessibility Declaration
Weatherstation
Uni Graz

End of this page section. Go to overview of page sections

End of this page section. Go to overview of page sections

Begin of page section:

End of this page section. Go to overview of page sections