Beginn des Seitenbereichs:
Seitenbereiche:

  • Zum Inhalt (Zugriffstaste 1)
  • Zur Positionsanzeige (Zugriffstaste 2)
  • Zur Hauptnavigation (Zugriffstaste 3)
  • Zur Unternavigation (Zugriffstaste 4)
  • Zu den Zusatzinformationen (Zugriffstaste 5)
  • Zu den Seiteneinstellungen (Benutzer/Sprache) (Zugriffstaste 8)
  • Zur Suche (Zugriffstaste 9)

Ende dieses Seitenbereichs. Zur Übersicht der Seitenbereiche

Beginn des Seitenbereichs:
Seiteneinstellungen:

Deutsch de
English en
Suche
Anmelden

Ende dieses Seitenbereichs. Zur Übersicht der Seitenbereiche

Beginn des Seitenbereichs:
Suche:

Suche nach Details rund um die Uni Graz
Schließen

Ende dieses Seitenbereichs. Zur Übersicht der Seitenbereiche


Suchen

Beginn des Seitenbereichs:
Hauptnavigation:

Seitennavigation:

  • Universität

    Universität
    • Die Uni Graz im Portrait
    • Organisation
    • Strategie und Qualität
    • Fakultäten
    • Universitätsbibliothek
    • Jobs
    • Campus
    Lösungen für die Welt von morgen entwickeln – das ist unsere Mission. Unsere Studierenden und unsere Forscher:innen stellen sich den großen Herausforderungen der Gesellschaft und tragen das Wissen hinaus.
  • Forschungsprofil

    Forschungsprofil
    • Unsere Expertise
    • Forschungsfragen
    • Forschungsportal
    • Forschung fördern
    • Forschungstransfer
    • Ethik in der Forschung
    Wissenschaftliche Exzellenz und Mut, neue Wege zu gehen. Forschung an der Universität Graz schafft die Grundlagen dafür, die Zukunft lebenswert zu gestalten.
  • Studium

    Studium
    • Studieninteressierte
    • Infos für Studierende
  • Community

    Community
    • International
    • Am Standort
    • Forschung und Wirtschaft
    • Absolvent:innen
    Die Universität Graz ist Drehscheibe für internationale Forschung, Vernetzung von Wissenschaft und Wirtschaft sowie für Austausch und Kooperation in den Bereichen Studium und Lehre.
  • Spotlight
Jetzt aktuell
  • 24 Klicks im Advent
  • Masterstudium plus: Jetzt anmelden!
  • Crowdfunding entdecken
  • Klimaneutrale Uni Graz
  • Forscher:innen gefragt
  • Arbeitgeberin Uni Graz
Menüband schließen

Ende dieses Seitenbereichs. Zur Übersicht der Seitenbereiche

Beginn des Seitenbereichs:
Sie befinden sich hier:

Universität Graz Naturwissenschaften Institut für Physik Neuigkeiten Barrierefrei kommunizieren
  • Über das Institut
  • Unsere Forschung
  • Persönlichkeiten
  • Studienservice
  • Neuigkeiten
  • Veranstaltungen

Ende dieses Seitenbereichs. Zur Übersicht der Seitenbereiche

Donnerstag, 07.03.2013

Barrierefrei kommunizieren

Grundlagenforschung an der Uni Graz: Die Verbesserung organischer Halbleiter revolutioniert auch die Technik von Fotovoltaik-Anlagen. Foto: C. Nöhren /pixelio.de

Grundlagenforschung an der Uni Graz: Die Verbesserung organischer Halbleiter revolutioniert auch die Technik von Fotovoltaik-Anlagen. Foto: C. Nöhren /pixelio.de

Die Elektronenverteilung in einer einzigen Moleküllage organischer Moleküle auf einem metallischen Träger wird mithilfe des photoelektrischen Effekts untersucht.

Die Elektronenverteilung in einer einzigen Moleküllage organischer Moleküle auf einem metallischen Träger wird mithilfe des photoelektrischen Effekts untersucht.

Uni Graz-PhysikerInnen bauen Brücken zwischen Molekülen

Preiswerte und biegsame Bildschirme für den Arbeitsplatz, effiziente und leistbare Fotovoltaik-Anlagen für das Eigenheim: Die mechanische Flexibilität organischer Moleküle erlaubt in Zukunft vollkommen neue Perspektiven in der Halbleitertechnologie. Jedoch wird ihr großflächiger Einsatz in technischen Anwendungen dadurch erschwert, dass sie elektrischen Strom schlecht transportieren. Dass die Leitfähigkeit organischer Materialien unter bestimmten Bedingungen erhöht werden kann, klärten nun WissenschafterInnen der Karl-Franzens-Universität Graz in einer gemeinsamen Untersuchung mit KollegInnen der Universitäten Würzburg und Hiroshima, Japan, auf. Die Ergebnisse dieser Grundlagenforschung erschienen vor kurzem in der Fachzeitschrift „Nature Communications“.


Verbesserte Materialien versprechen neue Anwendungsgebiete: So haben zum Beispiel herkömmliche Fotovoltaik-Anlagen – sie erledigen die Umwandlung von Sonnenlicht zu elektrischer Energie – derzeit einen Wirkungsgrad von maximal rund 20 Prozent bei vergleichsweise hohen Kosten. „Hier können organische Halbleiter eine vielversprechende Alternative bieten“, erklärt Ass.-Prof. Dr. Peter Puschnig, Physiker an der Uni Graz sowie Ko-Autor des wissenschaftlichen Artikels. „Allerdings leiten diese neuartigen Materialien elektrischen Strom eher schlecht.“ Die Ursache dieser mangelnden Effizienz liegt in erster Linie bei der schwachen Bindung oder Kommunikation zwischen den einzelnen Molekülen. „Die Elektronen müssen für den Transport von einem Molekül zum nächsten eine Barriere überwinden. Wir konnten nun nachweisen, dass über die Wechselwirkung der Moleküle mit einem metallischen Träger auch der Elektronentransport innerhalb der Molekülschicht verbessert wird “, führt der Physiker aus. Puschnig zeichnet für die theoretische Beschreibung und die numerische Simulation der Untersuchung verantwortlich; seine KollegInnen aus Würzburg und Hiroshima stellten die Molekülfilme her und führten die experimentelle Charakterisierung durch.


Das Experiment
In einem Ultrahochvakuum brachten PhysikerInnen eine einzelne geordnete Schicht organischer Moleküle durch Aufdampfen auf ein metallisches Trägermaterial, einen so genannten „Silbereinkristall“, auf. So angeordnet, zeigten die Moleküle ein ungewöhnliches Verhalten: „Es stellte sich heraus, dass Elektronenwolken benachbarter Moleküle einen gemeinsamen Zustand mit dem Metall ausbilden, wodurch benachbarte Moleküle animiert werden, miteinander zu kommunizieren“, erklärt Puschnig. Dadurch wird der Austausch von Ladungen erleichtert und die Leitfähigkeit erhöht. Diese Erkenntnis ist ein erster Schritt in Richtung Weiterentwicklung in der Materialtechnologie.
Das Projekt wurde vom Österreichischen Wissenschaftsfonds FWF unterstützt und ist im universitären Forschungsschwerpunkt „Modelle und Simulation“ der Universität Graz verankert.


Publikation in der Fachzeitschrift „Nature Communications“
Substrate-mediated band-dispersion of adsorbate molecular states. M. Wießner, J. Ziroff, F. Forster, M. Arita, K. Shimada, P. Puschnig, A. Schöll & F. Reinert. Nature Communications, DOI: 10.1038/ncomms2522

 

Rückfragen:
Ass.-Prof. Dr. Peter Puschnig
Institut für Physik
Karl-Franzens-Universität Graz
+43 316 380 5230
E-Mail: peter.puschnig(at)uni-graz.at

Erstellt von Konstantinos Tzivanopoulos

Weitere Artikel

Wie schnell ist ultraschnell?

In einer aktuellen Folge des Podcasts Bridge the Gap haben Tommaso Mazzocchi und Daniel Werner, zwei Physik-Doktoranden, Peter Puschnig zu ultraschneller Spektroskopie und seiner aktuellen Forschung interviewt. Das Gespräch spannt den Bogen von grundlegenden quantenmechanischen Konzepten bis hin zu modernsten Methoden zur Beobachtung elektronischer Dynamik in Echtzeit. Die Episode trägt den Titel „How fast is ultrafast spectroscopy?“ und richtet sich an Studierende sowie an alle, die sich für moderne Physikforschung interessieren.

Beschleunigte Kommunikation mit der Kanzelhöhe: Sonnenobservatorium rückt näher an Uni

Ab Mitte Dezember verkürzt sich Zugfahrt von Graz nach Villach auf etwas mehr als eine Stunde. Mit dieser schnelleren Bahnverbindung durch den Koralmtunnel rückt auch das Observatorium Kanzelhöhe für Sonnen- und Umweltforschung näher. Denn die österreichweit einzigartige Forschungsstation auf 1500 Meter Seehöhe befindet sich zwar auf der Kärntner Gerlitzen, ist aber seit mehr als 75 Jahren Teil der Universität Graz. 

Neues FWF – WEAVE Projekt „Längere Acene: Synthese, Grenzflächen und dünne Schichten“

Das Potenzial längerer Acene entschlüsseln: Eine neue Ära in der organischen Elektronik

Zwei Auszeichnungen für herausragende Dissertation

Gleich zwei hochrangige Auszeichnungen erhielt Andreas Windischbacher für seine hervorragende Dissertation. Am 17. März 2025 erhielt er aus den Händen unseres Herrn Bundespräsidenten im Rahmen der Promotio sub auspiciis Praesidentis rei publicae den goldenen Ehrenring der Republik Österreich. Am selben Tag wurde er zudem mit dem Josef-Krainer-Förderungspreis ausgezeichnet, dessen feierliche Übergabe dann allerdings erst am 12. November 2025 stattfand.

Beginn des Seitenbereichs:
Zusatzinformationen:

Universität Graz
Universitätsplatz 3
8010 Graz
  • Anfahrt und Kontakt
  • Kommunikation und Öffentlichkeitsarbeit
  • Moodle
  • UNIGRAZonline
  • Impressum
  • Datenschutzerklärung
  • Cookie-Einstellungen
  • Barrierefreiheitserklärung
Wetterstation
Uni Graz

Ende dieses Seitenbereichs. Zur Übersicht der Seitenbereiche

Ende dieses Seitenbereichs. Zur Übersicht der Seitenbereiche

Beginn des Seitenbereichs:

Ende dieses Seitenbereichs. Zur Übersicht der Seitenbereiche