Beginn des Seitenbereichs:
Seitenbereiche:

  • Zum Inhalt (Zugriffstaste 1)
  • Zur Positionsanzeige (Zugriffstaste 2)
  • Zur Hauptnavigation (Zugriffstaste 3)
  • Zur Unternavigation (Zugriffstaste 4)
  • Zu den Zusatzinformationen (Zugriffstaste 5)
  • Zu den Seiteneinstellungen (Benutzer/Sprache) (Zugriffstaste 8)
  • Zur Suche (Zugriffstaste 9)

Ende dieses Seitenbereichs. Zur Übersicht der Seitenbereiche

Beginn des Seitenbereichs:
Seiteneinstellungen:

Deutsch de
English en
Suche
Anmelden

Ende dieses Seitenbereichs. Zur Übersicht der Seitenbereiche

Beginn des Seitenbereichs:
Suche:

Suche nach Details rund um die Uni Graz
Schließen

Ende dieses Seitenbereichs. Zur Übersicht der Seitenbereiche


Suchen

Beginn des Seitenbereichs:
Hauptnavigation:

Seitennavigation:

  • Universität

    Universität
    • Die Uni Graz im Portrait
    • Organisation
    • Strategie und Qualität
    • Fakultäten
    • Universitätsbibliothek
    • Jobs
    • Campus
    Lösungen für die Welt von morgen entwickeln – das ist unsere Mission. Unsere Studierenden und unsere Forscher:innen stellen sich den großen Herausforderungen der Gesellschaft und tragen das Wissen hinaus.
  • Forschungsprofil

    Forschungsprofil
    • Unsere Expertise
    • Forschungsfragen
    • Forschungsportal
    • Forschung fördern
    • Forschungstransfer
    • Ethik in der Forschung
    Wissenschaftliche Exzellenz und Mut, neue Wege zu gehen. Forschung an der Universität Graz schafft die Grundlagen dafür, die Zukunft lebenswert zu gestalten.
  • Studium

    Studium
    • Studieninteressierte
    • Infos für Studierende
    • Welcome Weeks für Erstsemestrige
  • Community

    Community
    • International
    • Am Standort
    • Forschung und Wirtschaft
    • Absolvent:innen
    Die Universität Graz ist Drehscheibe für internationale Forschung, Vernetzung von Wissenschaft und Wirtschaft sowie für Austausch und Kooperation in den Bereichen Studium und Lehre.
  • Spotlight
Jetzt aktuell
  • Aufnahmeverfahren 2026 – alle Infos
  • Crowdfunding entdecken
  • Jetzt die "Youni"-App holen
  • Klimaneutrale Uni Graz
  • Forscher:innen gefragt
  • Arbeitgeberin Uni Graz
Menüband schließen

Ende dieses Seitenbereichs. Zur Übersicht der Seitenbereiche

Beginn des Seitenbereichs:
Sie befinden sich hier:

Universität Graz Naturwissenschaften Institut für Physik Neuigkeiten Genau geschaut
  • Über das Institut
  • Unsere Forschung
  • Persönlichkeiten
  • Studienservice
  • Neuigkeiten
  • Veranstaltungen

Ende dieses Seitenbereichs. Zur Übersicht der Seitenbereiche

Donnerstag, 18.07.2019

Genau geschaut

Nach einer chemischen Reaktion auf einer Kupferoberfläche (braun) entsteht eine einzelne, geordnete Schicht des Moleküls Bisanthene (grau), wobei noch die von der chemischen Reaktion verbliebenen Bromatome (rot) dazwischen gelagert sind. In dem anschließenden Photoemissionexperiment werden durch ultraviolettes Licht (violette Welle) Elektronen aus dem Molekül herausgelöst und in Bezug auf ihre Energie und Impuls detektiert (gelber Pfeil). Schematische Darstellung: Uni Graz/Puschnig.

Nach einer chemischen Reaktion auf einer Kupferoberfläche (braun) entsteht eine einzelne, geordnete Schicht des Moleküls Bisanthene (grau), wobei noch die von der chemischen Reaktion verbliebenen Bromatome (rot) dazwischen gelagert sind. In dem anschließenden Photoemissionexperiment werden durch ultraviolettes Licht (violette Welle) Elektronen aus dem Molekül herausgelöst und in Bezug auf ihre Energie und Impuls detektiert (gelber Pfeil). Schematische Darstellung: Uni Graz/Puschnig.

ForscherInnen aus Graz und Jülich klären chemische Reaktion zu Nano-Graphen auf

Messverfahren, die den exakten Zustand von Zwischenprodukten einer chemischen Reaktion beschreiben, gelten als Heiliger Gral in der Analytischen Chemie. „Eine besondere Herausforderung ist die Bestimmung von Reaktionsprodukten auf Oberflächen. Etablierte Methoden liefern hier oft keine eindeutigen Ergebnisse“, erklärt Peter Puschnig vom Institut für Physik der Universität Graz. Nun ist die Forschung der Natur ein Stück weit auf die Schliche gekommen: Dank eines Verfahrens, das die Grazer Physiker gemeinsam mit Kollegen des Forschungszentrums Jülich vor rund zehn Jahren entwickelt hatten. Die Methode ist nun soweit gereift, dass sie den Verlauf einer chemischen Reaktion auf einer Kupferoberfläche mitsamt allen Zwischenprodukten abbilden kann. Die Ergebnisse, die für die Entwicklung von ultradünnen Photovoltaikzellen oder chemischen Sensoren höchst relevant sind, wurden im renommierten Fachmagazin Nature Communications veröffentlicht.

Mit Hilfe der so genannten Orbitaltomografie können die WissenschafterInnen den wahrscheinlichen Aufenthaltsort von Elektronen in Atomen oder Molekülen mathematisch rekonstruieren. Nun wurde diese Methode erstmals auf die thermisch induzierte Reaktion des Moleküls Di-Brom-Bianthrazen auf einer Kupferoberfläche angewandt. Bisher war lediglich bekannt, dass hier bei Temperaturen von rund 700 Grad Celsius Graphen entsteht – ein aufgrund seiner Vielseitigkeit als „Wundermaterial“ gefeiertes Halbmetall. „Davor, bei rund 250 Grad Celsius, bildet sich jedoch schon ein Zwischenprodukt, das Nano-Graphen. Seine chemische Natur konnten wir bislang nicht eindeutig charakterisieren“, schildert Serguei Soubatch vom Forschungszentrum Jülich. Zudem war es bis dato nicht möglich gewesen, mit letzter Gewissheit zu klären, ob es bei dieser Reaktion zur Loslösung von Wasserstoffatomen kommt.

Mit Hilfe der Orbitaltomografie haben die ForscherInnen nun Klarheit geschaffen: Sie identifizierten Nano-Graphen als das Molekül Bisanthene (C28H14). „Außerdem haben wir gezeigt, dass sich die Molekülorbitale, also die räumliche Elektronenverteilung innerhalb eines Moleküls, bei Entfernen von Wasserstoffatomen sehr drastisch ändern würden. Dieses Faktum stützt unseren Schluss, dass es sich bei Nano-Graphen um C28H14 handeln muss“, erklärt Stefan Tautz vom Forschungszentrum Jülich. Das gewonnene Wissen ist für die Entwicklung neuartiger elektronischer Bauelemente, die auf nanostrukturiertem Graphen basieren, von essenzieller Bedeutung. An der Publikation waren außerdem die Physikalisch-Technische Bundesanstalt (PTB) Berlin und Universität Heidelberg beteiligt. Gefördert wurden die Forschungen von der Deutschen Forschungsgemeinschaft und dem österreichischen Wissenschaftsfonds FWF im Rahmen eines bilateralen DACH-Projekts.


Publikation: Yang et al., Identifying surface reaction intermediates with photoemission tomography. Nature Communications, Juli 2019.
>> Weitere Informationen
 

 

Erstellt von Gerhild Leljak

Weitere Artikel

Potential abgerufen

Der Sieger des diesjährigen Hallenfußballturniers für Bedienstete der steirischen Universitäten, Fachhochschulen und pädagogischen Hochschulen kommt aus unserem Haus! Wir gratulieren unserer Mannschaft mit dem klangvollen Namen ‚ "We all have potential!" zu diesem großartigen Erfolg!

Forschung auf internationalem Parkett

Visiting Award 2025 führt Marko Šimić an die Stanford University Das Dekanat der naturwissenschaftlichen Fakultät der Universität Graz hat Marko Šimić den Visiting Award 2025 verliehen. Dieses Mobilitätsstipendium wird jährlich an exzellente Nachwuchswissenschaftler:innen verliehen. Ziel ist es, Forschung auf höchstem Niveau an international renommierten Forschungseinrichtungen zu fördern, mit finanzieller und organisatorischer Unterstützung der Universität Graz sowie des Forschungsmanagements.

Happy Birthday Schrödingergleichung!

Eine der wichtigsten Gleichungen der Physik feiert einen runden Geburtstag.

Letzte freie Termine im Sommersemester: Schülerlabor „Candela“

Letzte freie Termine für Schüler:innenlabore, die für für die 3. bzw. 4. Klassen der SEK I konzipiert wurden, stehen für das Sommersemester 2026 noch zur Verfügung.

Beginn des Seitenbereichs:
Zusatzinformationen:

Universität Graz
Universitätsplatz 3
8010 Graz
  • Anfahrt und Kontakt
  • Kommunikation und Öffentlichkeitsarbeit
  • Moodle
  • UNIGRAZonline
  • Impressum
  • Datenschutzerklärung
  • Cookie-Einstellungen
  • Barrierefreiheitserklärung
Wetterstation
Uni Graz

Ende dieses Seitenbereichs. Zur Übersicht der Seitenbereiche

Ende dieses Seitenbereichs. Zur Übersicht der Seitenbereiche

Beginn des Seitenbereichs:

Ende dieses Seitenbereichs. Zur Übersicht der Seitenbereiche